Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


In haplorhine primates (tarsiers, monkeys, apes, and humans), there is a significant correlation between brain weight and maximum life-span when the effect of body size is removed. There is also a significant correlation in haplorhine primates between brain weight and female age at first reproduction. For strepsirhine primates (lorises and lemurs), there are no significant correlations between brain weight and either life-span or female reproductive age when the effect of body size is removed. This lack of correlation in strepsirhine primates may be related to the fact that these primates are nocturnal and/or natives of the island of Madagascar, both of which conditions may reduce competition for resources and predation pressure. These findings suggest that in haplorhine primates the genetic systems controlling brain growth are linked to the systems governing the life cycle so that species with longer cycles have larger brains. When the effect of body weight is removed, leaf-eating haplorhines have significantly smaller brains and shorter lives than haplorhines with other diets. Harem-living haplorhines also have significantly smaller brains and shorter life-spans than troop-living haplorhines when the effect of body weight is removed. We also sought to test the rate-of-living hypothesis by determining whether primates with basal metabolic rates that are higher than would be expected for their body size have shorter maximum life-spans than would be expected for their body size. Metabolic rate is not correlated with life-span or female age at first reproduction when the effect of body size is removed.

Free full text 


Logo of pnasLink to Publisher's site
Proc Natl Acad Sci U S A. 1993 Jan 1; 90(1): 118–122.
PMCID: PMC45611
PMID: 8419913

Brain weight and life-span in primate species.

Abstract

In haplorhine primates (tarsiers, monkeys, apes, and humans), there is a significant correlation between brain weight and maximum life-span when the effect of body size is removed. There is also a significant correlation in haplorhine primates between brain weight and female age at first reproduction. For strepsirhine primates (lorises and lemurs), there are no significant correlations between brain weight and either life-span or female reproductive age when the effect of body size is removed. This lack of correlation in strepsirhine primates may be related to the fact that these primates are nocturnal and/or natives of the island of Madagascar, both of which conditions may reduce competition for resources and predation pressure. These findings suggest that in haplorhine primates the genetic systems controlling brain growth are linked to the systems governing the life cycle so that species with longer cycles have larger brains. When the effect of body weight is removed, leaf-eating haplorhines have significantly smaller brains and shorter lives than haplorhines with other diets. Harem-living haplorhines also have significantly smaller brains and shorter life-spans than troop-living haplorhines when the effect of body weight is removed. We also sought to test the rate-of-living hypothesis by determining whether primates with basal metabolic rates that are higher than would be expected for their body size have shorter maximum life-spans than would be expected for their body size. Metabolic rate is not correlated with life-span or female age at first reproduction when the effect of body size is removed.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (974K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Sacher GA. 1976 Robert W. Kleemeier Award Lecture: Longevity, aging, and death: an evolutionary perspective. Gerontologist. 1978 Apr;18(2):112–119. [Abstract] [Google Scholar]
  • Economos AC. Brain-life span conjecture: a reevaluation of the evidence. Gerontology. 1980;26(2):82–89. [Abstract] [Google Scholar]
  • Hofman MA. Energy metabolism, brain size and longevity in mammals. Q Rev Biol. 1983 Dec;58(4):495–512. [Abstract] [Google Scholar]
  • Economos AC. Taxonomic differences in the mammalian life span-body weight relationship and the problem of brain weight. Gerontology. 1980;26(2):90–98. [Abstract] [Google Scholar]
  • Stephan H, Frahm H, Baron G. New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol (Basel) 1981;35(1):1–29. [Abstract] [Google Scholar]
  • Frahm HD, Stephan H, Stephan M. Comparison of brain structure volumes in Insectivora and Primates. I. Neocortex. J Hirnforsch. 1982;23(4):375–389. [Abstract] [Google Scholar]
  • Martin RD, Barbour AD. Aspects of line-fitting in bivariate allometric analyses. Folia Primatol (Basel) 1989;53(1-4):65–81. [Abstract] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/18338130
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/18338130

Article citations


Go to all (83) article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.