Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Under nutrient-deficient conditions, the yeast S. cerevisiae sequesters its own cytoplasmic components into vacuoles in the form of "autophagic bodies" (Takeshige, K., M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi. 1992. J. Cell Biol. 119:301-311). Immunoelectron microscopy showed that two cytosolic marker enzymes, alcohol dehydrogenase and phosphoglycerate kinase, are present in the autophagic bodies at the same densities as in the cytosol, but are not present in vacuolar sap, suggesting that cytosolic enzymes are also taken up into the autophagic bodies. To understand this process, we performed morphological analyses by transmission and immunological electron microscopies using a freeze-substitution fixation method. Spherical structures completely enclosed in a double membrane were found near the vacuoles of protease-deficient mutant cells when the cells were shifted to nutrient-starvation media. Their size, membrane thickness, and contents of double membrane-structures corresponded well with those of autophagic bodies. Sometimes these double membrane structures were found to be in contact with the vacuolar membrane. Furthermore their outer membrane was occasionally seen to be continuous with the vacuolar membrane. Histochemical staining of carbohydrate strongly suggested that the structures with double membranes fused with the vacuoles. These results indicated that these structures are precursors of autophagic bodies, "autophagosomes" in yeast. All the data obtained suggested that the autophagic process in yeast is essentially similar to that of the lysosomal system in mammalian cells.

Free full text 


Logo of jcellbiolLink to Publisher's site
J Cell Biol. 1994 Mar 2; 124(6): 903–913.
PMCID: PMC2119983
PMID: 8132712

Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization

Abstract

Under nutrient-deficient conditions, the yeast S. cerevisiae sequesters its own cytoplasmic components into vacuoles in the form of "autophagic bodies" (Takeshige, K., M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi. 1992. J. Cell Biol. 119:301-311). Immunoelectron microscopy showed that two cytosolic marker enzymes, alcohol dehydrogenase and phosphoglycerate kinase, are present in the autophagic bodies at the same densities as in the cytosol, but are not present in vacuolar sap, suggesting that cytosolic enzymes are also taken up into the autophagic bodies. To understand this process, we performed morphological analyses by transmission and immunological electron microscopies using a freeze- substitution fixation method. Spherical structures completely enclosed in a double membrane were found near the vacuoles of protease-deficient mutant cells when the cells were shifted to nutrient-starvation media. Their size, membrane thickness, and contents of double membrane- structures corresponded well with those of autophagic bodies. Sometimes these double membrane structures were found to be in contact with the vacuolar membrane. Furthermore their outer membrane was occasionally seen to be continuous with the vacuolar membrane. Histochemical staining of carbohydrate strongly suggested that the structures with double membranes fused with the vacuoles. These results indicated that these structures are precursors of autophagic bodies, "autophagosomes" in yeast. All the data obtained suggested that the autophagic process in yeast is essentially similar to that of the lysosomal system in mammalian cells.

Full Text

The Full Text of this article is available as a PDF (5.9M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Dunn WA., Jr Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol. 1990 Jun;110(6):1923–1933. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hasilik A, Tanner W. Biosynthesis of the vacuolar yeast glycoprotein carboxypeptidase Y. Conversion of precursor into the enzyme. Eur J Biochem. 1978 Apr 17;85(2):599–608. [Abstract] [Google Scholar]
  • Jones EW. Proteinase mutants of Saccharomyces cerevisiae. Genetics. 1977 Jan;85(1):23–33. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kitamoto K, Yoshizawa K, Ohsumi Y, Anraku Y. Mutants of Saccharomyces cerevisiae with defective vacuolar function. J Bacteriol. 1988 Jun;170(6):2687–2691. [Europe PMC free article] [Abstract] [Google Scholar]
  • Klionsky DJ, Herman PK, Emr SD. The fungal vacuole: composition, function, and biogenesis. Microbiol Rev. 1990 Sep;54(3):266–292. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kopitz J, Kisen GO, Gordon PB, Bohley P, Seglen PO. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol. 1990 Sep;111(3):941–953. [Europe PMC free article] [Abstract] [Google Scholar]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [Abstract] [Google Scholar]
  • Nakajima T, Ballou CE. Yeast manno-protein biosynthesis: solubilization and selective assay of four mannosyltransferases. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3912–3916. [Europe PMC free article] [Abstract] [Google Scholar]
  • Nishikawa S, Umemoto N, Ohsumi Y, Nakano A, Anraku Y. Biogenesis of vacuolar membrane glycoproteins of yeast Saccharomyces cerevisiae. J Biol Chem. 1990 May 5;265(13):7440–7448. [Abstract] [Google Scholar]
  • Onishi HR, Tkacz JS, Lampen JO. Glycoprotein nature of yeast alkaline phosphatase. Formation of active enzyme in the presence of tunicamycin. J Biol Chem. 1979 Dec 10;254(23):11943–11952. [Abstract] [Google Scholar]
  • Rabouille C, Strous GJ, Crapo JD, Geuze HJ, Slot JW. The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry. J Cell Biol. 1993 Feb;120(4):897–908. [Europe PMC free article] [Abstract] [Google Scholar]
  • Raymond CK, Roberts CJ, Moore KE, Howald I, Stevens TH. Biogenesis of the vacuole in Saccharomyces cerevisiae. Int Rev Cytol. 1992;139:59–120. [Abstract] [Google Scholar]
  • Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell. 1992 Dec;3(12):1389–1402. [Europe PMC free article] [Abstract] [Google Scholar]
  • Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 1992 Oct;119(2):301–311. [Europe PMC free article] [Abstract] [Google Scholar]
  • Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993 Oct 25;333(1-2):169–174. [Abstract] [Google Scholar]
  • Wada Y, Kitamoto K, Kanbe T, Tanaka K, Anraku Y. The SLP1 gene of Saccharomyces cerevisiae is essential for vacuolar morphogenesis and function. Mol Cell Biol. 1990 May;10(5):2214–2223. [Europe PMC free article] [Abstract] [Google Scholar]
  • Yamamoto A, Masaki R, Tashiro Y. Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. J Histochem Cytochem. 1990 Apr;38(4):573–580. [Abstract] [Google Scholar]
  • Yamamoto A, Masaki R, Fukui Y, Tashiro Y. Absence of cytochrome P-450 and presence of autolysosomal membrane antigens on the isolation membranes and autophagosomal membranes in rat hepatocytes. J Histochem Cytochem. 1990 Nov;38(11):1571–1581. [Abstract] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/12673555
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/12673555

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1083/jcb.124.6.903

Supporting
Mentioning
Contrasting
11
400
0

Article citations


Go to all (282) article citations

Other citations

Data 


Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.