Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Eukaryotic chromosomes are thought to be organized into a series of discrete higher-order chromatin domains. This organization is believed to be important not only in the compaction of the chromatin fibre, but also in the utilization of genetic information. Critical to this model are the domain boundaries that delimit and segregate the chromosomes into units of independent gene activity. In Drosophila, such domain boundaries have been identified through two different approaches. On the one hand, elements like scs/scs' and the reiterated binding site for the SU(HW) protein have been characterized through their activity of impeding enhancer-promoter interactions when intercalated between them. Their role of chromatin insulators can protect transgenes from genomic position effects, thereby establishing independent functional domains within the chromosome. On the other hand, domain boundaries of the Bithorax complex (BX-C) like Fab-7 and Mcp have been identified through mutational analysis. Mcp and Fab-7, however, may represent a specific class of boundary elements; instead of separating adjacent domains that contain separate structural genes. Mcp and Fab-7 delimit adjacent cis-regulatory domains, each of which interacts independently with their target promoters. In this article, we review the genetic and molecular characteristics of the domain boundaries of the BX-C. We describe how Fab-7 functions to confine activating as well as repressive signals to the flanking regulatory domains. Although the mechanisms by which Fab-7 works as a domain boundary remain an open issue, we provide preliminary evidence that Fab-7 is not a mere insulator like scs or the reiterated binding site for the SU(HW) protein.

Free full text 


Logo of cmlsLink to Publisher's site
Cell Mol Life Sci. 1998 Jan; 54(1): 60–70.
PMCID: PMC11147426
PMID: 9487387

Chromatin domain boundaries in the Bithorax complex

Abstract.

Eukaryotic chromosomes are thought to be organized into a series of discrete higher-order chromatin domains. This organization is believed to be important not only in the compaction of the chromatin fibre, but also in the utilization of genetic information. Critical to this model are the domain boundaries that delimit and segregate the chromosomes into units of independent gene activity. In Drosophila, such domain boundaries have been identified through two different approaches. On the one hand, elements like scs/scs′ and the reiterated binding site for the SU(HW) protein have been characterized through their activity of impeding enhancer-promoter interactions when intercalated between them. Their role of chromatin insulators can protect transgenes from genomic position effects, thereby establishing in dependent functional domains within the chromosome. On the other hand, domain boundaries of the Bithorax complex (BX-C) like Fab-7 and Mcp have been identified through mutational analysis. Mcp and Fab-7, however, may represent a specific class of boundary elements; instead of separating adjacent domains that contain separate structural genes, Mcp and Fab-7 delimit adjacent cis-regulatory domains, each of which interacts independently with their target promoters. In this article, we review the genetic and molecular characteristics of the domain boundaries of the BX-C. We describe how Fab-7 functions to confine activating as well as repressive signals to the flanking regulatory domains. Although the mechanisms by which Fab-7 works as a domain boundary remain an open issue, we provide preliminary evidence that Fab-7 is not a mere insulator like scs or the reiterated binding site for the SU(HW) protein.

Keywords: Key words. Bithorax complex; chromatin domain boundary; insulator; Fab-7; Mcp; scs; scs′; suppressor of Hairy-wing.

Articles from Cellular and Molecular Life Sciences: CMLS are provided here courtesy of Springer

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (69) article citations

Data 


Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.