Europe PMC requires Javascript to function effectively.
Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please
turn on Javascript support in your web browser and reload this page.
This website requires cookies, and the limited processing of your
personal data in order to function. By using the site you are agreeing
to this as outlined in our
privacy notice and cookie policy.
Share this article
Share with emailShare with twitterShare with linkedinShare with facebook
Abstract
To control human cytomegalovirus (HCMV) infection, NK cells and CD8 + T-cells are crucial. HLA class I (HLA-I) molecules play a central role for both NK and T-cell responses and are targets of multifaceted HCMV-encoded immunoevasins. A so far insufficiently studied HLA-I immunoevasin is the glycoprotein US10. It was shown that US10 targets HLA-G, but it is unknown whether US10 contributes also to escape from classical HLA-I antigen presentation. Our biochemical analysis revealed that early during maturation, all investigated HLA-I (HLA-A/B/C/E/G) heavy chains are recognized and bound by US10. Remarkably, the consequences of this initial binding strongly depended on both the HLA-I geno- and allotypes: i) HLA-A molecules escaped down-regulation by US10, ii) tapasin-dependent HLA-B molecules exhibited impaired recruitment to the peptide loading complex and maturation, iii) HLA-C and HLA-G, but not HLA-A/B/E, strongly bound US10 also in their β 2 m-assembled form. Thus, US10 senses geno- and allotypic differences in a so far unparalleled and multimodal manner, suggestive of adaptation to HLA-I genotype differences. At a further level of complexity, in HCMV-infected fibroblasts inhibition of overlapping US10 and US11 transcription revealed an additional HLA-I specificity, suggesting targeting of HLA-I in a synergistically arranged manner. Our study unveils the exceptional HLA-I selectivity of HCMV-encoded US10 and underlines its contribution to immune escape.