Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Morphogenesis is characterized by orchestrated changes in the shape and position of individual cells. Many of these movements are thought to be powered by motor proteins. However, in metazoans, it is often difficult to match specific motors with the movements they drive. The nonmuscle myosin II heavy chain (MHC encoded by zipper is required for cell sheet movements in Drosophila embryos. To determine if myosin II is required for other processes, we examined the phenotypes of strong and weak larval lethal mutations in spaghetti squash (sqh), which encodes the nonmuscle myosin II regulatory light chain (RLC). sqh mutants can be rescued to adulthood by daily induction of a sqh cDNA transgene driven by the hsp70 promoter. By transiently ceasing induction of the cDNA, we depleted RLC at specific times during development. When RLC is transiently depleted in larvae, the resulting adult phenotypes demonstrate that RLC is required in a stage-specific fashion for proper development of eye and leg imaginal discs. When RLC is depleted in adult females, oogenesis is reversibly disrupted. Without RLC induction, developing egg chambers display a succession of phenotypes that demonstrate roles for myosin II in morphogenesis of the interfollicular stalks, three morphologically and mechanistically distinct types of follicle cell migration, and completion of nurse cell cytoplasm transport (dumping). Finally, we show that in sqh mutant tissues, MHC is abnormally localized in punctate structures that do not contain appreciable amounts of filamentous actin or the myosin tail-binding protein p127. This suggests that sqh mutant phenotypes are chiefly caused by sequestration of myosin into inactive aggregates. These results show that myosin II is responsible for a surprisingly diverse array of cell shape changes throughout development.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (129) article citations

Data 


Similar Articles