Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The type 4 pili of Pseudomonas aeruginosa are important cell-associated virulence factors that play a crucial role in mediating (i) bacterial adherence to, and colonization of, mucosal surfaces, (ii) a novel mode of flagella-independent surface translocation known as 'twitching motility', and (iii) the initial stages of the infection process for a number of bacteriophages. A new set of loci involved in pilus biogenesis and twitching motility was identified based on the ability of DNA sequences downstream of the pilG gene to complement the non-piliated (pil) strain, PAO6609. Sequence analysis of a 3.2 kb region directly downstream of pilG revealed the presence of three genes, which have been designated pilH, pilI, and pilJ. The predicted translation product of the pilH gene (13,272 Da), like PilG, exhibits significant amino acid identity with the enteric single-domain response regulator CheY. The putative PilI protein (19,933 Da) is 28% identical to the FrzA protein, a CheW homologue of the gliding bacterium Myxococcus xanthus, and the PilJ protein (72,523 Da) is 26% identical to the enteric methyl-accepting chemotaxis protein (MCP) Tsr. Mutants containing insertions in pilI and pilJ were severely impaired in their ability to produce pili and did not translocate across solid surfaces. The pilH mutant remained capable of pilus production and twitching motility, but displayed an altered motility pattern characterized by the presence of many doughnut-shaped swirls. Each of these pil mutants, however, produced zones that were at least as large as the parent in flagellar-mediated swarm assays. The sequence similarities between the putative pilG, H, I and J gene products and several established chemotaxis proteins, therefore, lend strong support to the hypothesis that these proteins are part of a signal-transduction network that controls P. aeruginosa pilus biosynthesis and twitching motility.

References 


Articles referenced by this article (100)


Show 10 more references (10 of 100)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1111/j.1365-2958.1994.tb00296.x

Supporting
Mentioning
Contrasting
9
223
0

Article citations


Go to all (137) article citations

Data