Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Resource selection is often studied by ecologists interested in the environmental drivers of animal space use and movement. These studies commonly produce spatial predictions, which are of considerable utility to resource managers making habitat and population management decisions. It is thus paramount that predictions from resource selection studies are accurate. We evaluated model building and fitting strategies for optimizing resource selection function predictions in a use-availability framework. We did so by simulating low- and high-intensity spatial sampling data that respectively predicted study area and movement-based resource selection. We compared one of the most commonly used forms of statistical regularization, Akaike's Information Criterion (AIC), with the lesser used least absolute shrinkage and selection operator (LASSO). LASSO predictions were less variable and more accurate than AIC and were often best when considering additive and interacting variables. We explicitly demonstrate the predictive equivalence using the logistic and Poisson likelihoods and how it is lost when the available sample is too small. Regardless of modeling approach, interpreting the sign of coefficients as a measure of selection can be misleading when optimizing for prediction.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/72910026
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/72910026

Article citations