Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


We report on the rearrangement chemistry of model phosphorylated peptides during collision-induced dissociation (CID), where intramolecular phosphate group transfers are observed from donor to acceptor residues. Such "scrambling" could result in inaccurate modification localization, potentially leading to misidentifications. Systematic studies presented herein provide mechanistic insights for the unusually high phosphate group rearrangements presented some time ago by Reid and coworkers (Proteomics 2013, 13 [6], 964-973). It is postulated here that a basic residue like histidine can play a key role in mediating the phosphate group transfer by deprotonating the serine acceptor site. The proposed mechanism is consistent with the observation that fast collisional activation by collision-cell CID and higher-energy collisional dissociation (HCD) can shut down rearrangement chemistry. Additionally, the rearrangement chemistry is highly dependent on the charge state of the peptide, mirroring previous studies that less rearrangement is observed under mobile proton conditions.

References 


Articles referenced by this article (53)


Show 10 more references (10 of 53)

Citations & impact 


Impact metrics

Jump to Citations

Alternative metrics

Altmetric item for https://www.altmetric.com/details/56911466
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/56911466

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1002/jms.4351

Supporting
Mentioning
Contrasting
1
9
0

Article citations

Funding 


Funders who supported this work.

Agence Nationale de la Recherche (2)

LabEx MiChem part of French state funds (1)

NIH HHS (2)

National Institutes of Health (1)

National Science Foundation (4)