Europe PMC requires Javascript to function effectively.
Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please
turn on Javascript support in your web browser and reload this page.
This website requires cookies, and the limited processing of your
personal data in order to function. By using the site you are agreeing
to this as outlined in our
privacy notice and cookie policy.
1.
Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
Share this article
Share with emailShare with twitterShare with linkedinShare with facebook
Abstract
Receptor-ligand binding on contacting cells dictates the extent of transmembrane signaling through membrane receptors during cell communication, influencing both the physiological and pathological activities of cells. This process is integral to fundamental biological mechanisms including signal transduction, cancer metastasis, immune responses, and inflammatory cascades, all of which are profoundly influenced by the cell microenvironment. This article provides an overview of the kinetic theory of receptor-ligand binding and examines methods for measuring this interaction, along with their respective advantages and disadvantages. Furthermore, it comprehensively explores the factors that impact receptor-ligand binding, encompassing protein-membrane interactions, the bioelectric microenvironment, auxiliary factors, hydrogen bond strength, pH levels, cis and trans interactions between ligands and receptors. The application of receptor-ligand binding kinetics in various diseases such as immunity, cancer, and inflammation are also discussed. Additionally, the investigation into how functional substances alter receptor-ligand binding dynamics within specific cellular microenvironments presents a promising new approach to treating related diseases.