Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Quantitation of BCR-ABL1 with the quantitative reverse transcriptase polymerase chain reaction (RT-PCR) is very important in monitoring chronic myeloid leukemia (CML), which relies on an RNA reference material. A genomic RNA reference material (RM) containing the BCR-ABL1 P210 fusion mutation was developed, and an absolute quantitative method based on one-step reverse transcription digital PCR (RT-dPCR) was established for characterizing the RM. The proposed dPCR method demonstrates high accuracy and excellent analytical sensitivity, as shown by the linear relationship (0.94 < slope < 1.04, R2≧0.99) between the measured and nominal values of b2a2, b3a2, and ABL1-ref within the dynamic range (104-101 copies/reaction). Homogeneity and stability assessment based on dPCR indicated that the RM was homogeneous and stable for 24 months at -80 °C. The RM was used to evaluate inter-laboratory reproducibility in eight different laboratories, demonstrating that participating laboratories could consistently produce copy concentrations of b3a2 and ABL1-ref, as well as the BCR-ABL1/ABL1 ratio (CV < 2.0%). This work suggests that the RM can be employed in establishing metrological traceability for detecting mutations in the BCR-ABL1 fusion gene, as well as in quality control for testing laboratories.

References 


Articles referenced by this article (34)


Show 10 more references (10 of 34)

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


    Funding 


    Funders who supported this work.

    National Key Research and Development Program of China (1)