Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Interoperability in computational chemistry is elusive, impeded by the independent development of software packages and idiosyncratic nature of their output files. The cclib library was introduced in 2006 as an attempt to improve this situation by providing a consistent interface to the results of various quantum chemistry programs. The shared API across programs enabled by cclib has allowed users to focus on results as opposed to output and to combine data from multiple programs or develop generic downstream tools. Initial development, however, did not anticipate the rapid progress of computational capabilities, novel methods, and new programs; nor did it foresee the growing need for customizability. Here, we recount this history and present cclib 2, focused on extensibility and modularity. We also introduce recent design pivots-the formalization of cclib's intermediate data representation as a tree-based structure, a new combinator-based parser organization, and parsed chemical properties as extensible objects.

Citations & impact 


This article has not been cited yet.

Impact metrics

Alternative metrics

Altmetric item for https://www.altmetric.com/details/165678396
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/165678396

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.