Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


In this study, a 3 × 3 blue micro-LED array with a pixel size of 10 × 10 μm2 and a pitch of 15 μm was fabricated on an epilayer grown on a sapphire substrate using metalorganic chemical vapor deposition technology. The fabrication process involved photolithography, wet and dry etching, E-beam evaporation, and ion implantation technology. Arsenic multi-energy implantation was utilized to replace the mesa etching for electrical isolation, where the implantation depth increased with the average energy. Different ion depth profiles had varying effects on electrical properties, such as forward current and leakage currents, potentially causing damage to the n-GaN layer and increasing the series resistance of the LEDs. As the implantation depth increased, the light output power and peak external quantum efficiency of the LEDs also increased, improving from 5.33 to 9.82%. However, the efficiency droop also increased from 46.3 to 48.6%.

References 


Articles referenced by this article (11)


Show 1 more reference (10 of 11)

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


    Funding 


    Funders who supported this work.

    National Science and Technoloy Concil, Taiwan (1)