Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Background

Referral of patients with heart failure (HF) who are at high mortality risk for specialist evaluation is recommended. Yet, most tools for identifying such patients are difficult to implement in electronic health record (EHR) systems.

Objective

To assess the performance and ease of implementation of Machine learning Assessment of RisK and EaRly mortality in Heart Failure (MARKER-HF), a machine-learning model that uses structured data that is readily available in the EHR, and compare it with two commonly used risk scores: the Seattle Heart Failure Model (SHFM) and Meta-Analysis Global Group in Chronic (MAGGIC) Heart Failure Risk Score.

Design

Retrospective, cohort study.

Participants

Data from 6764 adults with HF were abstracted from EHRs at a large integrated health system from 1/1/10 to 12/31/19.

Main measures

One-year survival from time of first cardiology or primary care visit was estimated using MARKER-HF, SHFM, and MAGGIC. Discrimination was measured by the area under the receiver operating curve (AUC). Calibration was assessed graphically.

Key results

Compared to MARKER-HF, both SHFM and MAGGIC required a considerably larger amount of data engineering and imputation to generate risk score estimates. MARKER-HF, SHFM, and MAGGIC exhibited similar discriminations with AUCs of 0.70 (0.69-0.73), 0.71 (0.69-0.72), and 0.71 (95% CI 0.70-0.73), respectively. All three scores showed good calibration across the full risk spectrum.

Conclusions

These findings suggest that MARKER-HF, which uses readily available clinical and lab measurements in the EHR and required less imputation and data engineering than SHFM and MAGGIC, is an easier tool to identify high-risk patients in ambulatory clinics who could benefit from referral to a HF specialist.

References 


Articles referenced by this article (42)


Show 10 more references (10 of 42)

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


    Funding 


    Funders who supported this work.

    AHRQ HHS (1)

    Agency for Healthcare Research and Quality (1)

    NCATS NIH HHS (2)

    NHLBI NIH HHS (2)

    National Center for Advancing Translational Sciences (1)

    National Heart, Lung, and Blood Institute (1)