Europe PMC requires Javascript to function effectively.
Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please
turn on Javascript support in your web browser and reload this page.
This website requires cookies, and the limited processing of your
personal data in order to function. By using the site you are agreeing
to this as outlined in our
privacy notice and cookie policy.
1.
School of Psychology and Neuroscience, University of St Andrews, Scotland, UK; Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Germany.
Authors
Felsche E
1
(1 author)
2.
School of Psychology and Neuroscience, University of St Andrews, Scotland, UK; Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Germany; Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria.
Authors
Völter CJ
2
(1 author)
3.
Department of Psychology, University of Portsmouth, UK.
Authors
Herrmann E
3
(1 author)
4.
School of Psychology and Neuroscience, University of St Andrews, Scotland, UK.
Authors
Seed AM
4
(1 author)
5.
The Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, USA.
Share this article
Share with emailShare with twitterShare with linkedinShare with facebook
Abstract
concepts are a powerful tool for making wide-ranging predictions in new situations based on little experience. Whereas looking-time studies suggest an early emergence of this ability in human infancy, other paradigms like the relational match to sample task often fail to detect abstract concepts until late preschool years. Similarly, non-human animals show difficulties and often succeed only after long training regimes. Given the considerable influence of slight task modifications, the conclusiveness of these findings for the development and phylogenetic distribution of abstract reasoning is debated. Here, we tested the abilities of 3 to 5-year-old children, chimpanzees, and capuchin monkeys in a unified and more ecologically valid task design based on the concept of "overhypotheses" (Goodman, 1955). Participants sampled high- and low-valued items from containers that either each offered items of uniform value or a mix of high- and low-valued items. In a test situation, participants should switch away earlier from a container offering low-valued items when they learned that, in general, items within a container are of the same type, but should stay longer if they formed the overhypothesis that containers bear a mix of types. We compared each species' performance to the predictions of a probabilistic hierarchical Bayesian model forming overhypotheses at a first and second level of abstraction, adapted to each species' reward preferences. Children and, to a more limited extent, chimpanzees demonstrated their sensitivity to abstract patterns in the evidence. In contrast, capuchin monkeys did not exhibit conclusive evidence for the ability of abstract knowledge formation.