Europe PMC requires Javascript to function effectively.
Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please
turn on Javascript support in your web browser and reload this page.
This website requires cookies, and the limited processing of your
personal data in order to function. By using the site you are agreeing
to this as outlined in our
privacy notice and cookie policy.
Share this article
Share with emailShare with twitterShare with linkedinShare with facebook
Abstract
With the great demand for europium in green-energy technologies comes the need for innovative methods to isolate the elements. We introduce a solid-liquid extraction method using a 2.2.2-cryptand-modified solid support to separate europium from gadolinium using their differences in electrochemical potential. The method overcomes challenges associated with the separation of those two ions that have similar coordination chemistry in the +3 oxidation state. A competitive adsorption study in the cryptand system between EuII/EuIII and GdIII shows greater affinity for EuII relative to GdIII. After separation from GdIII, Eu was released by oxidizing EuII to EuIII with 99.3% purity. The purity of separated Eu is unaffected by pH between pH 3.0 and 5.5. Overall, we demonstrate that by modifying a solid support with 2.2.2-cryptand, divalent europium can be separated from trivalent gadolinium based on the differences of affinities of 2.2.2-cryptand for the two ions.