Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


In this study, field measurement was conducted using an integrated online monitoring system to characterize heterogeneous properties and light absorption of refractory black carbon (rBC). rBC particles are mainly from the incomplete combustion of carbonaceous fuels. With the data collected from a single particle soot photometer, thickly coated (BCkc) and thinly coated (BCnc) particles are characterized with their lag times. With different responses to the precipitation, a dramatical decline of 83 % in the number concentration of BCkc is shown after rainfall, while that of BCnc decreases by 39 %. There is a contrast in core size distribution that BCkc is always with larger particle sizes but has smaller core mass median diameters (MMD) than BCnc. The mean rBC-containing particle mass absorption cross-section (MAC) is 6.70 ± 1.52 m2 g-1, while the corresponding rBC core is 4.90 ± 1.02 m2 g-1. Interestingly, there are wide variations in the core MAC values which range by 57 % from 3.79 to 5.95 m2 g-1, which are also closely related to those of the whole rBC-containing particles with a Pearson correlation of 0.58 (p < 0.01). Errors would be made if we eliminate the discrepancies and set the core MAC as a constant when calculating absorption enhancement (Eabs). In this study, the mean Eabs is 1.37 ± 0.11 while the source apportionment shows that there are five contributors of Eabs including secondary aging (37 %), coal combustion (26 %), fugitive dust (15 %), biomass burning (13 %) and traffic-related emissions (9 %). Secondary aging is found to be the highest contributor due to the liquid phase reactions in formations of secondary inorganic aerosol. Our study characterizes property diversities and provides insights into the sources impacting the light absorption of rBC and will be helpful for controlling it in the future.

Citations & impact 


This article has not been cited yet.

Impact metrics

Alternative metrics

Altmetric item for https://www.altmetric.com/details/144583309
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/144583309

Funding 


Funders who supported this work.

National Natural Science Foundation of China (1)

Natural Science Basic Research Program of Shaanxi Province (1)

Youth Innovation Promotion Association of the Chinese Academy of Sciences (1)