Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Encapsulation of ionic liquids (ILs) has been shown to be an effective technique to overcome slow mass transfer rates and handling difficulties that stem from the high viscosity of bulk ILs. These systems commonly rely on diffusion of small molecules through the encapsulating material (shell), into the IL core, and thus the composition of the shell impacts uptake performance. Herein, we report the impact of polymer shell composition on the uptake of the small molecule dye methyl red from water by encapsulated IL. Capsules with core of 1-hexyl-3-methylimidazolium bis(trifluorosulfonyl)imide ([Hmim][TFSI]) were prepared by interfacial polymerization in emulsions stabilized by graphene oxide (GO) nanosheets; the use of different diamines and diisocyanates gave capsule shells with polyureas that were all aliphatic, aliphatic/aromatic, and aliphatic/polar aprotic. These capsules were then added to aqueous solutions of methyl red at different pH values, and migration of the dye into the capsules was monitored by UV-vis spectroscopy, compared to the capsule shell alone. Regardless of the polymer identity, similar extents of dye uptake were observed (>90% at pH = 2), yet capsules with shells containing polyureas with polar aprotic linkages took longer to reach completion. These studies indicate that small changes in capsule shell composition can lead to different performance in small molecule uptake, giving insight into how to tailor shell composition for specific applications, such as solvent remediation and gas uptake.

Citations & impact 


Impact metrics

Jump to Citations

Alternative metrics

Altmetric item for https://www.altmetric.com/details/137926462
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/137926462

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1021/acs.langmuir.2c02015

Supporting
Mentioning
Contrasting
0
11
0

Article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.

Funding 


Funders who supported this work.

Division of Materials Research (1)