Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Motivation

Coiled-coil is composed of two or more helices that are wound around each other. It widely exists in proteins and has been discovered to play a variety of critical roles in biology processes. Generally, there are three types of structural features in coiled-coil: coiled-coil domain (CCD), oligomeric state and register. However, most of the existing computational tools only focus on one of them.

Results

Here, we describe a new deep learning model, CoCoPRED, which is based on convolutional layers, bidirectional long short-term memory, and attention mechanism. It has three networks, i.e. CCD network, oligomeric state network, and register network, corresponding to the three types of structural features in coiled-coil. This means CoCoPRED has the ability of fulfilling comprehensive prediction for coiled-coil proteins. Through the 5-fold cross-validation experiment, we demonstrate that CoCoPRED can achieve better performance than the state-of-the-art models on both CCD prediction and oligomeric state prediction. Further analysis suggests the CCD prediction may be a performance indicator of the oligomeric state prediction in CoCoPRED. The attention heads in CoCoPRED indicate that registers a, b and e are more crucial for the oligomeric state prediction.

Availability and implementation

CoCoPRED is available at http://www.csbio.sjtu.edu.cn/bioinf/CoCoPRED. The datasets used in this research can also be downloaded from the website.

Supplementary information

Supplementary data are available at Bioinformatics online.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/116007686
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/116007686

Article citations


Go to all (6) article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


    Funding 


    Funders who supported this work.

    National Natural Science Foundation of China (2)