Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Exosomes are most important intercellular communicators and tetraspanins/tetraspanin-complexes have been suggested to play an important role in exosomal target cell selection. We have shown that only exosomes expressing a Tspan8-CD49d complex preferentially bind endothelial cells, which initiates angiogenesis. This finding was unexpected as in the exosome donor cell Tspan8 is associated with CD49c and the tetraspanins CD9 and CD151. In view of the discussed therapeutic power of exosomes as message/drug transporter, it became important to clarify the mechanisms accounting for the distinct Tspan8-web in the cell membrane versus exosomes. We therefore compared the route of Tspan8 and Tspan8-chimera internalization, where the N- and/or C-terminal regions were exchanged with the corresponding regions of CD9 or CD151. Activation-induced Tspan8-internalization proceeds more rapidly than CD9 internalization and is accompanied by disassembly of the Tspan8-CD9-CD151 membrane complex in resting cells. Tspan8-internalization relies on the association of the Tspan8 N-terminal region with intersectin-2, a multimodular complex involved in clathrin-coated pit internalization. Internalization and recovery of Tspan8 in early endosomes is further promoted by the recruitment of CD49d such that only in PMA-activated cells a Tspan8-INS2-CD49d-clathrin complex is recovered in cholesterol-depletion-resistant membrane microdomains. PMA-induced Tspan8-internalization promotes cell migration, but reduces matrix and cell adhesion. Thus, stimulation initiates tetraspanin-web rearrangements, which have strong functional consequences for the cell, exosome-delivery and exosome target selection. This knowledge will be essential for generating tailored therapeutic exosomes.

References 


Articles referenced by this article (51)


Show 10 more references (10 of 51)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/j.biocel.2010.10.002

Supporting
Mentioning
Contrasting
1
57
0

Article citations


Go to all (47) article citations

Data