Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The yeast Saccharomyces cerevisiae cannot utilize xylose, but the introduction of a xylose isomerase that functions well in yeast will help overcome the limitations of the fungal oxido-reductive pathway. In this study, a diploid S. cerevisiae S288c[2n YMX12] strain was constructed expressing the Bacteroides thetaiotaomicron xylA (XI) and the Scheffersomyces stipitis xyl3 (XK) and the changes in the metabolite pools monitored over time. Cultivation on xylose generally resulted in gradual changes in metabolite pool size over time, whereas more dramatic fluctuations were observed with cultivation on glucose due to the diauxic growth pattern. The low G6P and F1,6P levels observed with cultivation on xylose resulted in the incomplete activation of the Crabtree effect, whereas the high PEP levels is indicative of carbon starvation. The high UDP-D-glucose levels with cultivation on xylose indicated that the carbon was channeled toward biomass production. The adenylate and guanylate energy charges were tightly regulated by the cultures, while the catabolic and anabolic reduction charges fluctuated between metabolic states. This study helped elucidate the metabolite distribution that takes place under Crabtree-positive and Crabtree-negative conditions when cultivating S. cerevisiae on glucose and xylose, respectively.

References 


Articles referenced by this article (33)


Show 10 more references (10 of 33)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Article citations

Data 


Funding 


Funders who supported this work.

Japan Society for the Promotion of Science

    National Research Foundation (1)