Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Down syndrome (DS) is caused by trisomy for human chromosome 21. Individuals with DS commonly exhibit mental retardation, which is associated with abnormal brain development. In the neocortex of the DS brain, the density of neurons is markedly reduced, whereas that of astrocytes is increased. Similar to abnormalities seen in DS brains, mouse models of DS show deficits in brain development, and neural progenitor cells that give rise to neurons and glia show dysregulation in their differentiation. These suggest that the dysregulation of progenitor fate choices contributes to alterations in the numbers of neurons and astrocytes in the DS brain. Nevertheless, the molecular basis underlying these defects remains largely unknown. We showed that the overexpression of two human chromosome 21 genes, DYRK1A and DSCR1, contributes to suppressed neuronal differentiation of progenitors in the Ts1Cje mouse model of DS. In addition, the effect of DYRK1A and DSCR1 overexpression on neuronal differentiation is mediated by excessive attenuation of the transcription factor NFATc. Additionally, we demonstrated that an increased dosage of DYRK1A contributes to elevated potential of Ts1Cje progenitors to differentiate into astrocytes and enhanced astrogliogenesis in the Ts1Cje neocortex. Further, we linked the increased dosage of DYRK1A to dysregulation of STAT, a transcription factor critical for astrogliogenesis. Together, our studies identify critical pathways responsible for the proper differentiation of neural progenitors into neurons and astrocytes, with direct implications for the anomalies in brain development observed in DS.

References 


Articles referenced by this article (17)


Show 7 more references (10 of 17)

Citations & impact 


Impact metrics

Jump to Citations

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1248/yakushi.16-00236-1

Supporting
Mentioning
Contrasting
0
1
0

Article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.