Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Background

Vascular aneurysm is an abnormal local dilatation of an artery that can lead to vessel rupture and sudden death. The only treatment involves surgical or endovascular repair or exclusion. There is currently no approved medical therapy for this condition. Recent data established a strong association between genetic variants in the 9p21 chromosomal region in humans and the presence of cardiovascular diseases, including aneurysms. However, the mechanisms linking this 9p21 DNA variant to cardiovascular risk are still unknown.

Methods and results

Here, we show that deletion of the orthologous 70-kb noncoding interval on mouse chromosome 4 (chr4(Δ70kb/Δ70kb) mice) is associated with reduced aortic expression of cyclin-dependent kinase inhibitor genes p19Arf and p15Inkb. Vascular smooth muscle cells from chr4(Δ70kb/Δ70kb) mice show reduced transforming growth factor-β-dependent canonical Smad2 signaling but increased cyclin-dependent kinase-dependent Smad2 phosphorylation at linker sites, a phenotype previously associated with tumor growth and consistent with the mechanistic link between reduced canonical transforming growth factor-β signaling and susceptibility to vascular diseases. We also show that targeted deletion of the 9p21 risk interval promotes susceptibility to aneurysm development and rupture when mice are subjected to a validated model of aneurysm formation. The vascular disease of chr4(Δ70kb/Δ70kb) mice is prevented by treatment with a cyclin-dependent kinase inhibitor.

Conclusions

The results establish a direct mechanistic link between 9p21 noncoding risk interval and susceptibility to aneurysm and may have important implications for the understanding and treatment of vascular diseases.

References 


Articles referenced by this article (45)


Show 10 more references (10 of 45)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/2652848
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/2652848

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1161/circgenetics.114.000696

Supporting
Mentioning
Contrasting
0
7
1

Article citations


Go to all (10) article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.

Funding 


Funders who supported this work.

British Heart Foundation (1)