Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs), and induced PSCs (iPSCs) are able to self-renew and differentiate into a multitude of specialized cellular lineages. In these cells, the pluripotential identity is maintained by a group of transcription factors (TFs). Among these factors, SOX TFs play an essential role, not only in regulating pluripotency but also in mediating self-renewal and differentiation. Some SOX TFs are highly expressed in undifferentiated PSCs, while others are upregulated upon differentiation to promote specific lineage differentiation. Further roles of SOX factors in pluripotency are highlighted through their critical involvement in iPSCs generation. To perform these multiple functions and activities, SOX TFs are strongly associated with a complex regulatory network(s) that involves the binding of SOX factors to variant trans-acting partners to activate or suppress specific genes. Although, SOX2 has attracted special attention as a critical factor in maintaining PSCs characteristics and as an integral component that is required to reprogram somatic cells into pluripotency, new reports widely appreciated that other SOX TFs, such as SOX1, SOX3, or reengineered SOX7 and SOX17, can compensate for the absence of SOX2 and thus play a fundamental role during the reprogramming process and maintaining pluripotency. These findings indicate that the recent progress has greatly expanded our knowledge about the role of SOX factors in PSCs. Thus, in this review we summarize what is currently known about the roles of SOX factors in PSCs and their role in somatic cell reprogramming. Also, we intend to provide an update on their relationship with other factors in regulating the characteristics and early differentiation of PSCs.

References 


Articles referenced by this article (109)


Show 10 more references (10 of 109)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/2613816
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/2613816

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1089/scd.2014.0297

Supporting
Mentioning
Contrasting
3
43
0

Article citations


Go to all (31) article citations