Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


This paper describes a procedure to extend the crosstalk correction method presented in a previous paper [A. Bybi, S. Grondel, J. Assaad, A.-C. Hladky-Hennion, M. Rguiti, Reducing crosstalk in array structures by controlling the excitation voltage of individual elements: a feasibility study, Ultrasonics, 53 (6) (2013) 1135-1140] from the harmonic regime to the transient one. For this purpose a part of an ultrasonic transducer array radiating in water is modeled around the frequency 0.5 MHz using the finite element method. The study is carried out at low frequency in order to respect the same operating conditions than the previous paper. This choice facilitated the fabrication of the transducer arrays and the comparison of the numerical results with the experimental ones. The modeled array is composed of seventeen elements with the central element excited, while the others are grounded. The matching layers and the backing are not taken into account which limits the crosstalk only to the piezoelectric elements and fluid. This consideration reduces the structure density mesh and results in faster computation time (about 25 min for each configuration using a computer with a processor Intel Core i5-3210M, frequency 2.5 GHz and having 4 Go memory (RAM)). The novelty of this research work is to prove the efficiency of the crosstalk correction method in large frequency band as it is the case in medical imaging. The numerical results show the validity of the approach and demonstrate that crosstalk can be reduced by at least 13 dB in terms of displacement. Consequently, the directivity pattern of the individual element can be improved.

References 


Articles referenced by this article (12)


Show 2 more references (10 of 12)

Citations & impact 


Impact metrics

Jump to Citations

Article citations