Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The mitotic checkpoint prevents advance to anaphase prior to successful attachment of every centromere/kinetochore to mitotic spindle microtubules. Using purified components and Xenopus egg extracts, the kinetochore-associated microtubule motor CENP-E is now shown to be the activator of the essential checkpoint kinase BubR1. Since kinase activity and the checkpoint are silenced following CENP-E-dependent microtubule attachment in extracts or binding of CENP-E antibodies that do not disrupt CENP-E association with BubR1, CENP-E mediates silencing of BubR1 signaling. Checkpoint signaling requires the normal level of BubR1 containing a functional Mad3 domain implicated in Cdc20 binding, but only a small fraction need be kinase competent. This supports bifunctional roles for BubR1 in the checkpoint: an enzymatic one requiring CENP-E-dependent activation of its kinase activity at kinetochores and a stoichiometric one as a direct inhibitor of Cdc20.

References 


Articles referenced by this article (42)


Show 10 more references (10 of 42)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/2644532
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/2644532

Article citations


Go to all (145) article citations

Data 


Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.