Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Drosophila melanogaster possesses a single gene, Dm myb, that is closely related to the vertebrate family of Myb genes, which encode transcription factors that are involved in regulatory decisions affecting cell proliferation, differentiation and apoptosis. The vertebrate Myb genes have been specifically implicated in regulating the G(1)/S transition of the cell cycle. Dm myb is expressed in all proliferating tissues, but not at detectable levels in endoreduplicating cells. Analysis of loss-of-function mutations in Dm myb revealed a block at the G(2)/M transition and mitotic defects, but did not directly implicate Dm myb function in the G(1/)S transition. We have used the Gal4-UAS binary system of ectopic expression to further investigate the function of Dm myb. Our results demonstrate that depending upon the type of cell cycle, ectopic Dm myb activity can exert opposing effects on S phase: driving DNA replication and promoting proliferation in diploid cells, even when developmental signals normally dictate cell cycle arrest; but suppressing endoreduplication in endocycling cells, an effect that can be overcome by induction of E2F. We also show that a C-terminally truncated DMyb protein, which is similar to an oncogenic form of vertebrate Myb, has more potent effects than the full-length protein, especially in endoreduplicating tissues. This finding indicates that the C terminus acts as a negative regulatory domain, which can be differentially regulated in a tissue-specific manner. Our studies help to resolve previous discrepancies regarding myb gene function in Drosophila and vertebrates. We conclude that in proliferating cells, Dm myb has the dual function of promoting S phase and M phase, while preserving diploidy by suppressing endoreduplication.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (21) article citations

Data 


Funding 


Funders who supported this work.

NCI NIH HHS (1)