Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Homeotic (Hox) genes regulate the identity of structures along the anterior-posterior axis of most animals. The low DNA-binding specificities of Hox proteins have raised the question of how these transcription factors selectively regulate target gene expression. The discovery that the Extradenticle (Exd)/Pbx and Homothorax (Hth)/Meis proteins act as cofactors for several Hox proteins has advanced the view that interactions with cofactors are critical to the target selectivity of Hox proteins. It is not clear, however, to what extent Hox proteins also regulate target genes in the absence of cofactors. In Drosophila melanogaster, the Hox protein Ultrabithorax (Ubx) promotes haltere development and suppresses wing development by selectively repressing many genes of the wing-patterning hierarchy, and this activity requires neither Exd nor Hth function. Here, we show that Ubx directly regulates a flight appendage-specific cis-regulatory element of the spalt (sal) gene. We find that multiple monomer Ubx-binding sites are required to completely repress this cis-element in the haltere, and that individual Ubx-binding sites are sufficient to mediate its partial repression. These results suggest that Hox proteins can directly regulate target genes in the absence of the cofactor Extradenticle. We propose that the regulation of some Hox target genes evolves via the accumulation of multiple Hox monomer binding sites. Furthermore, because the development and morphological diversity of the distal parts of most arthropod and vertebrate appendages involve Hox, but not Exd/Pbx or Hth/Meis proteins, this mode of target gene regulation appears to be important for distal appendage development and the evolution of appendage diversity.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/4868180
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/4868180

Article citations


Go to all (113) article citations

Other citations

Data 


Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.