Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Delayed-rectifier K+ currents (I(DR)) in pancreatic beta-cells are thought to contribute to action potential repolarization and thereby modulate insulin secretion. The voltage-gated K+ channel, K(V)2.1, is expressed in beta-cells, and the biophysical characteristics of heterologously expressed channels are similar to those of I(DR) in rodent beta-cells. A novel peptidyl inhibitor of K(V)2.1/K(V)2.2 channels, guangxitoxin (GxTX)-1 (half-maximal concentration approximately 1 nmol/l), has been purified, characterized, and used to probe the contribution of these channels to beta-cell physiology. In mouse beta-cells, GxTX-1 inhibits 90% of I(DR) and, as for K(V)2.1, shifts the voltage dependence of channel activation to more depolarized potentials, a characteristic of gating-modifier peptides. GxTX-1 broadens the beta-cell action potential, enhances glucose-stimulated intracellular calcium oscillations, and enhances insulin secretion from mouse pancreatic islets in a glucose-dependent manner. These data point to a mechanism for specific enhancement of glucose-dependent insulin secretion by applying blockers of the beta-cell I(DR), which may provide advantages over currently used therapies for the treatment of type 2 diabetes.

References 


Articles referenced by this article (33)


Show 10 more references (10 of 33)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/3653212
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/3653212

Article citations


Go to all (101) article citations

Other citations

Data