Nothing Special   »   [go: up one dir, main page]

Gradiente

Gradiente

En cálculo vectorial, el gradiente \nabla f de un campo escalar f es un campo vectorial. El vector gradiente de f evaluado en un punto genérico x del dominio de f, \nabla f(x), indica la dirección en la cual el campo f varía más rápidamente y su módulo representa el ritmo de variación de f en la dirección de dicho vector gradiente. El gradiente se representa con el operador diferencial nabla \nabla seguido de la función (cuidado de no confundir el gradiente con la divergencia, ésta última se denota con un punto de producto escalar entre el operador nabla y el campo). También puede representarse mediante \vec{\nabla} f, o usando la notación \operatorname{grad}(f). La generalización del concepto de gradiente a campos f vectoriales es el concepto de matriz Jacobiana.

Contenido

Definición

Si se toma como campo escalar el que se asigna a cada punto del espacio una presión P (campo escalar de 3 variables), entonces el vector gradiente en un punto genérico del espacio indicará la dirección en la cual la presión cambiará más rápidamente. Otro ejemplo es el de considerar el mapa de líneas de nivel de una montaña como campo escalar que asigna a cada pareja de coordenadas latitud/longitud un escalar altitud (campo escalar de 2 variables). En este caso el vector gradiente en un punto genérico indicará la dirección de máxima inclinación de la montaña. Nótese que el vector gradiente será perpendicular a las líneas de contorno (líneas "equiescalares") del mapa. El gradiente se define como el campo vectorial cuyas funciones coordenadas son las derivadas parciales del campo escalar, esto es:

 \boldsymbol{\nabla} f(\bold{r})  = \left(\frac{\partial f(\bold{r})}{\partial x_1 }, \dots,  \frac{\partial f(\bold{r})}{\partial x_n }  \right)

Esta definición se basa en que el gradiente permite calcular fácilmente las derivadas direccionales. Definiendo en primer lugar la derivada direccional según un vector:

\frac{\partial \phi}{\partial \bold{n} }
\equiv \lim_{\epsilon\to 0} \frac{\phi(\bold{r}
- \epsilon \hat{\bold{n}})-\phi(\bold{r})}{\epsilon}

Una forma equivalente de definir el gradiente es como el único vector que, multiplicado por el vector unitario, da la derivada direccional del campo escalar:

\frac{\partial \phi}{\partial \bold{n} } = \bold{n}\cdot \boldsymbol{\nabla}\phi

Con la definición anterior, el gradiente está caracterizado de forma unívoca. El gradiente se expresa alternativamente mediante el uso del operador nabla:

{\rm grad}\ \phi = \nabla\phi

Interpretación del gradiente

De forma geométrica el gradiente es un vector que se encuentra normal a una superficie o curva en el espacio a la cual se le esta estudiando, en un punto cualquiera, llámese (x,y), (x,y,z), (tiempo, temperatura), etcétera. Algunos ejemplos son:

  • Considere una habitación en la cual la temperatura se define a través de un campo escalar, de tal manera que en cualquier punto (x, y, z) \,\!, la temperatura es \phi(x, y, z) \,\!. Asumiremos que la temperatura no varia con respecto al tiempo. Siendo esto así, para cada punto de la habitación, el gradiente en ese punto nos dará la dirección en la cual se calienta más rápido. La magnitud del gradiente nos dirá cuán rápido se calienta en esa dirección.
  • Considere una montaña en la cual su altura en el punto (x,y) se define como H(x, y). El gradiente de H en ese punto estará en la dirección para la que hay un mayor grado de inclinación. La magnitud del gradiente nos mostrará cuán empinada se encuentra la pendiente.

Propiedades

El gradiente verifica que:

  • Es ortogonal a las superficies equiescalares, definidas por \phi\,\! =cte.
  • Apunta en la dirección en que la derivada direccional es máxima.
  • Su módulo es igual a esta derivada direccional máxima.
  • Se anula en los puntos estacionarios (máximos, mínimos y puntos de silla).
  • El campo formado por el gradiente en cada punto es siempre irrotacional, esto es,

\nabla\times(\nabla\phi) \equiv \vec{0}

Expresión en diferentes sistemas de coordenadas

A partir de su definición puede hallarse su expresión en diferentes sistemas de coordenadas. En coordenadas cartesianas, su expresión es simplemente


\nabla\phi = \frac{\partial \phi}{\partial x}\hat{x}+\frac{\partial \phi}{\partial y}\hat{y}+\frac{\partial \phi}{\partial z}\hat{z}

En un sistema de coordenadas ortogonales, el gradiente requiere los factores de escala, mediante la expresión


\nabla\phi = \frac{1}{h_1}\frac{\partial \phi}{\partial q_1}\hat{q}_1
+\frac{1}{h_2}\frac{\partial \phi}{\partial q_2}\hat{q}_2+
\frac{1}{h_3}\frac{\partial \phi}{\partial q_3}\hat{q}_3

Para coordenadas cilíndricas (hρ = hz = 1, hφ = ρ) resulta

 \nabla\phi = \frac{\partial \phi}{\partial \rho}\hat{\rho}
+\frac{1}{\rho}\frac{\partial \phi}{\partial \varphi}\hat{\varphi}+
\frac{\partial \phi}{\partial z}\hat{z}

y para coordenadas esféricas (hr = 1, hθ = r, hφ = rsenθ)

   \nabla\phi = \frac{\partial \phi}{\partial r}\hat{r}
+\frac{1}{r}\frac{\partial \phi}{\partial \theta}\hat{\theta}+
\frac{1}{r\,{\rm sen}\,\theta}\frac{\partial \phi}{\partial \varphi}\hat{\varphi}

En un sistema de coordenadas curvilíneo general el gradiente tiene la forma:

\nabla\phi = g^{ij}\frac{\partial \phi}{\partial x^i}\hat{e}_j

donde en la expresión anterior se usado el convenio de sumación de Einstein.

Gradiente de un campo vectorial

Ver también Tensor_deformación#Tensores_finitos_de_deformación

En un espacio euclídeo tridimensional, el concepto de gradiente también puede extenderse al caso de un campo vectorial, siendo el gradiente de \scriptstyle \mathbf{F} un tensor que da el diferencial del campo al realizar un desplazamiento:

 \frac{d\mathbf{F}}{d\mathbf{r}}(\mathbf{v}):=
\lim_{\mathbf{v}\to 0}
\frac{ \mathbf{F}(\mathbf{r}+\mathbf{v}) - \mathbf{F}(\mathbf{r}) }{\|\mathbf{v}\|} 
= (\nabla\mathbf{F})\cdot \mathbf{v}

Fijada una base vectorial, este tensor podrá representarse por una matriz 3x3, que en coordenadas cartesianas está formada por las tres derivadas parciales de las tres componentes del campo vectorial. El gradiente de deformación estará bien definido sólo si el límite anterior existe para todo \scriptstyle \mathbf{v} y es una función continua de dicho vector.

Técnicamente el gradiente de deformación no es otra cosa que la aplicación lineal de la que la matriz jacobiana es su expresión explícita en coordenadas.

Ejemplo

Dada la función f(x,y,z) = 2x + 3y2 − sin(z) su vector gradiente es:

\nabla f= \begin{pmatrix}
{\frac{\partial f}{\partial x}},  
{\frac{\partial f}{\partial y}}, 
{\frac{\partial f}{\partial z}}
\end{pmatrix} = 
\begin{pmatrix}
{2}, 
{6y},
{-\cos(z)}
\end{pmatrix}.

Aplicaciones

Aproximación lineal de una función

El gradiente de una función f definida de RnR caracteriza la mejor aproximación lineal de la función en un punto particular x0 en Rn. Se expresa así:

 g(x) = f(x_0) + (\nabla_x f(x_0))^T (x-x_0) donde \nabla_x f(x_0) es el gradiente evaluado en x0

Aplicaciones en física

La interpretación física del gradiente es la siguiente: mide la rapidez de variación de una magnitud física al desplazarse una cierta distancia. Un gradiente alto significa que de un punto a otro cercano la magnitud puede presentar variaciones importantes (aquí se entiende por gradiente alto o grande uno tal que su módulo es grande). Un gradiente de una magnitud pequeño o nulo implica que dicha magnitud apenas varía de un punto a otro.

El gradiente de una magnitud física posee innumerables aplicaciones en física, especialmente en electromagnetismo y mecánica de fluidos. En particular, existen muchos campos vectoriales que puede escribirse como el gradiente de un potencial escalar.

 \bold{E} = -\boldsymbol{\nabla}\phi

  • Todo campo que pueda escribirse como el gradiente de un campo escalar, se denomina potencial, conservativo o irrotacional. Así, una fuerza conservativa deriva de la energía potencial como:

 \bold{F} = -\boldsymbol{\nabla} V

  • Los gradientes también aparecen en los procesos de difusión que verifican la ley de Fick o la ley de Fourier para la temperatura. Así, por ejemplo, el flujo de calor en un material es directamente proporcional al gradiente de temperaturas

 \bold{q} = -k \boldsymbol{\nabla}T

siendo \scriptstyle k la conductividad térmica.

Wikimedia foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Mira otros diccionarios:

  • gradiente — sustantivo masculino 1. Grado en que varía una magnitud con relación a la unidad: gradiente de temperatura, gradiente geotérmico. 2. Origen: América. Pendiente, inclinación del terreno …   Diccionario Salamanca de la Lengua Española

  • Gradiente — (die), übliche eisenbahntechnische Bezeichnung für die Bahnhöhenlinie, welche der Oberkante des Erdkörpers oder Unterbaues folgt, mithin die Höhe des Bahnplanums (s.d.) oder der Bettungssohle des Oberbaues (in der Regel 0,4 m unter der… …   Lexikon der gesamten Technik

  • gradiente — variación sistémica de la concentración de una sustancia que influye en el comportamiento de una célula Diccionario ilustrado de Términos Médicos.. Alvaro Galiano. 2010. gradiente 1. velocidad de aumento o disminución de un f …   Diccionario médico

  • gradiente — (De grado1). 1. m. Razón entre la variación del valor de una magnitud en dos puntos próximos y la distancia que los separa. Gradiente de temperatura, de presión. 2. f. Bol.), Chile, Ecuad.), Nic. y Perú. declive (ǁ pendiente) …   Diccionario de la lengua española

  • gradiente — /gra djɛnte/ s.m. [dal lat. gradiens entis, part. pres. di gradi camminare, avanzare ]. 1. (fis.) [modifica per unità di lunghezza che una grandezza subisce da un punto all altro dello spazio lungo una certa direzione: g. termico, barico ]… …   Enciclopedia Italiana

  • gradiente — s. m. [Física] Taxa de variação de uma grandeza física, ao longo de uma dimensão espacial e numa direção.   ‣ Etimologia: latim gradiens, entis …   Dicionário da Língua Portuguesa

  • Gradiente — (Del lat. gradiens, ntis, el que anda.) ► sustantivo masculino 1 FÍSICA Relación de diferencia de temperatura y presión barométrica entre dos puntos. ► sustantivo femenino 2 Chile, Ecuador, Nicaragua, Perú Pendiente, declive o repecho de un… …   Enciclopedia Universal

  • Gradiente — Infobox Company company name = Gradiente company company type = Private company slogan = Isso é Gradiente foundation = 1964 location = flagicon|Brazil São Paulo, Brazil key people = Eugênio Staub industry = Electronics num employees = 1,800… …   Wikipedia

  • Gradiente — Die Gradiente ist Teil des Höhenplans Das Höhenprofil …   Deutsch Wikipedia

  • gradiente — gra·dièn·te s.m. 1. TS fis. misura direzionale della variazione per unità di lunghezza di uno scalare variabile nello spazio (simb. grad) 2. TS mat. data una funzione scalare, vettore che ha come componenti le derivate rispetto a una delle… …   Dizionario italiano

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”