Nothing Special   »   [go: up one dir, main page]

What a lovely hat

Is it made out of tin foil?




Dates are inconsistent

Dates are inconsistent

32 results sorted by ID

Possible spell-corrected query: cbc
2024/1237 (PDF) Last updated: 2024-08-05
Efficient Variants of TNT with BBB Security
Ritam Bhaumik, Wonseok Choi, Avijit Dutta, Cuauhtemoc Mancillas López, Hrithik Nandi, Yaobin Shen
Secret-key cryptography

At EUROCRYPT'20, Bao et al. have shown that three-round cascading of $\textsf{LRW1}$ construction, which they dubbed as $\textsf{TNT}$, is a strong tweakable pseudorandom permutation that provably achieves $2n/3$-bit security bound. Jha et al. showed a birthday bound distinguishing attack on $\textsf{TNT}$ and invalidated the proven security bound and proved a tight birthday bound security on the $\textsf{TNT}$ construction in EUROCRYPT'24. In a recent work, Datta et al. have...

2024/550 (PDF) Last updated: 2024-07-17
Fast Parallelizable Misuse-Resistant Authenticated Encryption: Low Latency (Decryption-Fast) SIV
Mustafa Khairallah
Secret-key cryptography

MRAE security is an important goal for many AEAD applications where the nonce uniqueness cannot be maintained and security risks are significant. However, MRAE schemes can be quite expensive. Two of the SoTA MRAE-secure schemes; Deoxys-II and AES-GCM-SIV rely on internal parallelism and special instructions to achieve competitive performance. However, they both suffer from the same bottleneck, they have at least one call to the underlying primitive that cannot be parallelized to any other...

2024/294 (PDF) Last updated: 2024-02-21
Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate
Thomas Peters, Yaobin Shen, François-Xavier Standaert
Secret-key cryptography

Authenticated Encryption (AE) modes of operation based on Tweakable Block Ciphers (TBC) usually measure efficiency in the number of calls to the underlying primitive per message block. On the one hand, many existing solutions reach a primitive-rate of 1, meaning that each n-bit block of message asymptotically needs a single call to the TBC with output length n. On the other hand, while these modes look optimal in a blackbox setting, they become less attractive when leakage comes into play,...

2024/218 (PDF) Last updated: 2024-02-16
Lightweight Leakage-Resilient PRNG from TBCs using Superposition
Mustafa Khairallah, Srinivasan Yadhunathan, Shivam Bhasin
Secret-key cryptography

In this paper, we propose a leakage-resilient pseudo-random number generator (PRNG) design that leverages the rekeying techniques of the PSV-Enc encryption scheme and the superposition property of the Superposition-Tweak-Key (STK) framework. The random seed of the PRNG is divided into two parts; one part is used as an ephemeral key that changes every two calls to a tweakable block cipher (TBC), and the other part is used as a static long-term key. Using the superposition property, we show...

2023/1272 (PDF) Last updated: 2024-04-25
Tight Security of TNT and Beyond: Attacks, Proofs and Possibilities for the Cascaded LRW Paradigm
Ashwin Jha, Mustafa Khairallah, Mridul Nandi, Abishanka Saha
Secret-key cryptography

Liskov, Rivest and Wagner laid the theoretical foundations for tweakable block ciphers (TBC). In a seminal paper, they proposed two (up to) birthday-bound secure design strategies --- LRW1 and LRW2 --- to convert any block cipher into a TBC. Several of the follow-up works consider cascading of LRW-type TBCs to construct beyond-the-birthday bound (BBB) secure TBCs. Landecker et al. demonstrated that just two-round cascading of LRW2 can already give a BBB security. Bao et al. undertook a...

2023/1212 (PDF) Last updated: 2023-08-24
CLRW1$^{3}$ is not Secure Beyond the Birthday Bound: Breaking TNT with ${O(2^{n/2})}$ queries
Mustafa Khairallah
Secret-key cryptography

In this paper, we present a new distinguisher for the Tweak-aNd-Tweak (TNT) tweakable block cipher with $O(2^{n/2})$ complexity. The distinguisher is an adaptive chosen ciphertext distinguisher, unlike previous attacks that are only non-adaptive chosen plaintext attacks. However, the attack contradicts the security claims made by the designers. Given TNT can be seen as the three-round CLRW1 tweakable block cipher, our attack matches its more conservative bound. We provide the distinguisher...

2022/1776 (PDF) Last updated: 2022-12-29
Offset-Based BBB-Secure Tweakable Block-ciphers with Updatable Caches
Arghya Bhattacharjee, Ritam Bhaumik, Mridul Nandi
Secret-key cryptography

A nonce-respecting tweakable blockcipher is the building-block for the OCB authenticated encryption mode. An XEX-based TBC is used to process each block in OCB. However, XEX can provide at most birthday bound privacy security, whereas in Asiacrypt 2017, beyond-birthday-bound (BBB) forging security of OCB3 was shown by Bhaumik and Nandi. In this paper we study how at a small cost we can construct a nonce-respecting BBB-secure tweakable blockcipher. We propose the OTBC-3 construction, which...

2022/1534 (PDF) Last updated: 2022-11-05
Masked Iterate-Fork-Iterate: A new Design Paradigm for Tweakable Expanding Pseudorandom Function
Elena Andreeva, Benoit Cogliati, Virginie Lallemand, Marine Minier, Antoon Purnal, Arnab Roy
Secret-key cryptography

Many modes of operations for block ciphers or tweakable block ciphers do not require invertibility from their underlying primitive. In this work, we study fixed-length Tweakable Pseudorandom Function (TPRF) with large domain extension, a novel primitive that can bring high security and significant performance optimizations in symmetric schemes, such as (authenticated) encryption. Our first contribution is to introduce a new design paradigm, derived from the Iterate-Fork-Iterate...

2022/918 (PDF) Last updated: 2024-03-03
Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds
Wonseok Choi, Jooyoung Lee, Yeongmin Lee
Secret-key cryptography

A secure $n$-bit tweakable block cipher~(TBC) using $t$-bit tweaks can be modeled as a tweakable uniform random permutation, where each tweak defines an independent random $n$-bit permutation. When an input to this tweakable permutation is fixed, it can be viewed as a perfectly secure $t$-bit random function. On the other hand, when a tweak is fixed, it can be viewed as a perfectly secure $n$-bit random permutation, and it is well known that the sum of two random permutations is...

2022/846 (PDF) Last updated: 2024-07-09
A Long Tweak Goes a Long Way: High Multi-user Security Authenticated Encryption from Tweakable Block Ciphers
Benoît Cogliati, Jérémy Jean, Thomas Peyrin, Yannick Seurin
Secret-key cryptography

We analyze the multi-user (mu) security of a family of nonce-based authentication encryption (nAE) schemes based on a tweakable block cipher (TBC). The starting point of our work is an analysis of the mu security of the SCT-2 mode which underlies the nAE scheme Deoxys-II, winner of the CAESAR competition for the defense-in-depth category. We extend this analysis in two directions, as we detail now. First, we investigate the mu security of several TBC-based variants of the counter...

2021/1535 (PDF) Last updated: 2021-11-22
Light-OCB: Parallel Lightweight Authenticated Cipher with Full Security
Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Manicillas Lopez, Mridul Nandi
Secret-key cryptography

This paper proposes a lightweight authenticated encryption (AE) scheme, called Light-OCB, which can be viewed as a lighter variant of the CAESAR winner OCB as well as a faster variant of the high profi le NIST LWC competition submission LOCUS-AEAD. Light-OCB is structurally similar to LOCUS-AEAD and uses a nonce-based derived key that provides optimal security, and short-tweak tweakable blockcipher (tBC) for efficient domain separation. Light-OCB improves over LOCUS-AEAD by reducing the...

2021/1340 (PDF) Last updated: 2022-11-29
TEDT2 - Highly Secure Leakage-resilient TBC-based Authenticated Encryption
Eik List
Secret-key cryptography

Leakage-resilient authenticated encryption (AE) schemes received considerable attention during the previous decade. Two core security models of bounded and unbounded leakage have evolved, where the latter has been motivated in a very detailed and practice-oriented manner. In that setting, designers often build schemes based on (tweakable) block ciphers due to the small state size, such as the recent two-pass AE scheme TEDT from TCHES 1/2020. TEDT is interesting due to its high security...

2021/1250 (PDF) Last updated: 2021-09-20
Efficient Leakage-Resilient MACs without Idealized Assumptions
Francesco Berti, Chun Guo, Thomas Peters, François-Xavier Standaert
Secret-key cryptography

The security proofs of leakage-resilient MACs based on symmetric building blocks currently rely on idealized assumptions that hardly translate into interpretable guidelines for the cryptographic engineers implementing these schemes. In this paper, we first present a leakage-resilient MAC that is both efficient and secure under standard and easily interpretable black box and physical assumptions. It only requires a collision resistant hash function and a single call per message...

2021/1154 (PDF) Last updated: 2021-09-14
1, 2, 3, Fork: Counter Mode Variants based on a Generalized Forkcipher
Elena Andreeva, Amit Singh Bhati, Bart Preneel, Damian Vizar
Secret-key cryptography

A multi-forkcipher (MFC) is a generalization of the forkcipher (FC) primitive introduced by Andreeva et al. at ASIACRYPT'19. An MFC is a tweakable cipher that computes $s$ output blocks for a single input block, with $s$ arbitrary but fixed. We define the MFC security in the ind-prtmfp notion as indistinguishability from $s$ tweaked permutations. Generalizing tweakable block ciphers (TBCs, $s = 1$), as well as forkciphers ($s=2$), MFC lends itself well to building simple-to-analyze modes of...

2020/542 (PDF) Last updated: 2021-04-14
Lightweight Authenticated Encryption Mode Suitable for Threshold Implementation
Yusuke Naito, Yu Sasaki, Takeshi Sugawara
Secret-key cryptography

This paper proposes tweakable block cipher (TBC) based modes $\mathsf{PFB\_Plus}$ and $\mathsf{PFB}\omega$ that are efficient in threshold implementations (TI). Let $t$ be an algebraic degree of a target function, e.g.~$t=1$ (resp.~$t>1$) for linear (resp.~non-linear) function. The $d$-th order TI encodes the internal state into $d t + 1$ shares. Hence, the area size increases proportionally to the number of shares. This implies that TBC based modes can be smaller than block cipher (BC)...

2020/052 (PDF) Last updated: 2020-01-17
Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE
Mohamed Tolba, Muhammad ElSheikh, Amr M. Youssef
Secret-key cryptography

Tweakable TWINE (T-TWINE) is a new lightweight tweakable block cipher family proposed by Sakamoto $et$ $al$. at IWSEC 2019. T-TWINE is the first Tweakable Block Cipher (TBC) that is built on Generalized Feistel Structure (GFS). It is based on the TWINE block cipher in addition to a simple tweak scheduling based on SKINNY’s tweakey schedule. Similar to TWINE, it has two versions, namely, T-TWINE-80 and T-TWINE-128, both have a block length of 64 bits and employ keys of length 80 and 128 bits,...

2019/1413 (PDF) Last updated: 2019-12-06
Strong Authenticity with Leakage under Weak and Falsifiable Physical Assumptions
Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, François-Xavier Standaert
Secret-key cryptography

Authenticity can be compromised by information leaked via side-channels (e.g., power consumption). Examples of attacks include direct key recoveries and attacks against the tag verification which may lead to forgeries. At FSE 2018, Berti et al. described two authenticated encryption schemes which provide authenticity assuming a “leak-free implementation” of a Tweakable Block Cipher (TBC). Precisely, security is guaranteed even if all the intermediate computations of the target implementation...

2019/992 (PDF) Last updated: 2020-07-10
Duel of the Titans: The Romulus and Remus Families of Lightweight AEAD Algorithms
Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, Thomas Peyrin
Secret-key cryptography

In this article, we propose two new families of very lightweight and efficient authenticated encryption with associated data (AEAD) modes, Romulus and Remus, that provide security beyond the birthday bound with respect to the block-length $n$. The former uses a tweakable block cipher (TBC) as internal primitive and can be proven secure in the standard model. The later uses a block cipher (BC) as internal primitive and can be proven secure in the ideal cipher model. Both our modes allow to...

2019/600 (PDF) Last updated: 2019-06-02
ZOCB and ZOTR: Tweakable Blockcipher Modes for Authenticated Encryption with Full Absorption
Zhenzhen Bao, Jian Guo, Tetsu Iwata, Kazuhiko Minematsu
Secret-key cryptography

We define ZOCB and ZOTR for nonce-based authenticated encryption with associated data, and analyze their provable security. These schemes use a tweakable blockcipher (TBC) as the underlying primitive, and fully utilize its input to process a plaintext and associated data (AD). This property is commonly referred to as full absorption, and this has been explored for schemes based on a permutation or a pseudorandom function (PRF). Our schemes improve the efficiency of TBC-based counterparts of...

2019/451 (PDF) Last updated: 2019-05-08
Reducing the Cost of Authenticity with Leakages: a CIML2-Secure AE Scheme with One Call to a Strongly Protected Tweakable Block Cipher
Francesco Berti, Olivier Pereira, François-Xavier Standaert
Secret-key cryptography

This paper presents CONCRETE (Commit-Encrypt-Send-the-Key) a new Authenticated Encryption mode that offers CIML2 security, that is, ciphertext integrity in the presence of nonce misuse and side-channel leakages in both encryption and decryption. CONCRETE improves on a recent line of works aiming at leveled implementations, which mix a strongly protected and energy demanding implementation of a single component, and other weakly protected and much cheaper components. Here, these components...

2019/440 (PDF) Last updated: 2019-07-20
Elastic-Tweak: A Framework for Short Tweak Tweakable Block Cipher
Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas Lopez, Mridul Nandi, Yu Sasaki
Secret-key cryptography

Tweakable block cipher (TBC), a stronger notion than standard block ciphers, has wide-scale applications in symmetric-key schemes. At a high level, it provides flexibility in design and (possibly) better security bounds. In multi-keyed applications, a TBC with short tweak values can be used to replace multiple keys. However, the existing TBC construction frameworks, including TWEAKEY and XEX, are designed for general purpose tweak sizes. Specifically, they are not optimized for short tweaks,...

2019/339 (PDF) Last updated: 2019-10-14
Lightweight Authenticated Encryption Mode of Operation for Tweakable Block Ciphers
Yusuke Naito, Takeshi Sugawara
Secret-key cryptography

The use of a small block length is a common strategy when designing lightweight (tweakable) block ciphers (TBCs), and several $64$-bit primitives have been proposed. However, when such a $64$-bit primitive is used for an authenticated encryption with birthday-bound security, it has only $32$-bit data complexity, which is subject to practical attacks. To employ a short block length without compromising security, we propose PFB, a lightweight TBC-based authenticated encryption with associated...

2017/535 (PDF) Last updated: 2017-12-15
ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message Authentication
Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, Yannick Seurin

We propose a new mode of operation called ZMAC allowing to construct a (stateless and deterministic) message authentication code (MAC) from a tweakable block cipher (TBC). When using a TBC with $n$-bit blocks and $t$-bit tweaks, our construction provides security (as a variable-input-length PRF) beyond the birthday bound with respect to the block-length $n$ and allows to process $n+t$ bits of inputs per TBC call. In comparison, previous TBC-based modes such as PMAC1, the TBC-based...

2017/466 (PDF) Last updated: 2017-07-01
Tweakable Blockciphers for Efficient Authenticated Encryptions with Beyond the Birthday-Bound Security
Yusuke Naito

Modular design via a tweakable blockcipher (TBC) offers efficient authenticated encryption (AE) schemes (with associated data) that call a blockcipher once for each data block (of associated data or a plaintext). However, the existing efficient blockcipher-based TBCs are secure up to the birthday bound, where the underlying keyed blockcipher is a secure strong pseudorandom permutation. Existing blockcipher-based AE schemes with beyond-birthday-bound (BBB) security are not efficient, that is,...

2017/220 (PDF) Last updated: 2017-06-07
Cryptanalysis of PMACx, PMAC2x, and SIVx
Kazuhiko Minematsu, Tetsu Iwata
Secret-key cryptography

At CT-RSA 2017, List and Nandi proposed two variable input length pseudorandom functions (VI-PRFs) called PMACx and PMAC2x, and a deterministic authenticated encryption scheme called SIVx. These schemes use a tweakable block cipher (TBC) as the underlying primitive, and are provably secure up to the query complexity of $2^n$, where $n$ denotes the block length of the TBC. In this paper, we falsify the provable security claims by presenting concrete attacks. We show that with the query...

2016/864 (PDF) Last updated: 2016-09-10
Salvaging Weak Security Bounds for Blockcipher-Based Constructions
Thomas Shrimpton, R. Seth Terashima

The concrete security bounds for some blockcipher-based constructions sometimes become worrisome or even vacuous; for example, when a light-weight blockcipher is used, when large amounts of data are processed, or when a large number of connections need to be kept secure. Rotating keys helps, but introduces a ``hybrid factor'' $m$ equal to the number of keys used. In such instances, analysis in the ideal-cipher model (ICM) can give a sharper picture of security, but this heuristic is called...

2016/234 (PDF) Last updated: 2017-01-25
Trick or Tweak: On the (In)security of OTR’s Tweaks
Raphael Bost, Olivier Sanders
Secret-key cryptography

Tweakable blockcipher (TBC) is a powerful tool to design authenticated encryption schemes as illustrated by Minematsu's Offset Two Rounds (OTR) construction. It considers an additional input, called tweak, to a standard blockcipher which adds some variability to this primitive. More specifically, each tweak is expected to define a different, independent pseudo-random permutation. In this work we focus on OTR's way to instantiate a TBC and show that it does not achieve such a property for a...

2015/888 (PDF) Last updated: 2015-09-14
Tweak-Length Extension for Tweakable Blockciphers
Kazuhiko Minematsu, Tetsu Iwata
Secret-key cryptography

Tweakable blockcipher (TBC) is an extension of standard blockcipher introduced by Liskov, Rivest and Wagner in 2002. TBC is a versatile building block for efficient symmetric-key cryptographic functions, such as authenticated encryption. In this paper we study the problem of extending tweak of a given TBC of fixed-length tweak, which is a variant of popular problem of converting a blockcipher into a TBC, i.e., blockcipher mode of operation. The problem is particularly important for known...

2015/761 (PDF) Last updated: 2015-07-31
Implementation of the SCREAM Tweakable Block Cipher in MSP430 Assembly Language
William Diehl
Implementation

The encryption mode of the Tweakable Block Cipher (TBC) of the SCREAM Authenticated Cipher is implemented in the MSP430 microcontroller. Assembly language versions of the TBC are prepared using both precomputed tweak keys and tweak keys computed “on-the-fly.” Both versions are compared against published results for the assembly language version of SCREAM on the ATMEL AVR microcontroller, and against the C reference implementation in terms of performance and size. The assembly language...

2012/450 (PDF) Last updated: 2014-02-20
Tweakable Blockciphers with Beyond Birthday-Bound Security
Will Landecker, Thomas Shrimpton, R. Seth Terashima
Secret-key cryptography

Liskov, Rivest and Wagner formalized the tweakable blockcipher (TBC) primitive at CRYPTO'02. The typical recipe for instantiating a TBC is to start with a blockcipher, and then build up a construction that admits a tweak. Almost all such constructions enjoy provable security only to the birthday bound, and the one that does achieve security beyond the birthday bound (due to Minematsu) severely restricts the tweak size and requires per-invocation blockcipher rekeying. This paper gives the...

2009/217 (PDF) Last updated: 2009-09-07
Pseudo-Random Functions and Parallelizable Modes of Operations of a Block Cipher
Palash Sarkar

This paper considers the construction and analysis of pseudo-random functions (PRFs) with specific reference to modes of operations of a block cipher. In the context of message authentication codes (MACs), earlier independent work by Bernstein and Vaudenay show how to reduce the analysis of relevant PRFs to some probability calculations. In the first part of the paper, we revisit this result and use it to prove a general result on constructions which use a PRF with a ``small'' domain to...

2007/029 (PDF) Last updated: 2007-07-26
A General Construction of Tweakable Block Ciphers and Different Modes of Operations
Debrup Chakraborty, Palash Sarkar
Secret-key cryptography

This work builds on earlier work by Rogaway at Asiacrypt 2004 on tweakable block cipher (TBC) and modes of operations. Our first contribution is to generalize Rogaway's TBC construction by working over a ring {\ring} and by the use of a masking sequence of functions. The ring {\ring} can be instantiated as either $GF(2^n)$ or as $\bbbz_{2^n}$. Further, over $GF(2^n)$, efficient instantiations of the masking sequence of functions can be done using either a binary Linear Feedback Shift...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.