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Abstract. We introduce an enhanced requirement of deniable public
key encryption that we call dual-deniability. It asks that a sender who is
coerced should be able to produce fake randomness, which can explain
the target ciphertext as the encryption of any alternative message under
any valid key she/he desires to deny. Compared with the original notion
of deniability (Canetti et al. in CRYPTO ’97, hereafter named message-
deniability), this term further provides a shield for the anonymity of the
receiver against coercion attacks.

We first give a formal definition of dual-deniability, along with its
weak-mode variant. For conceptual understanding, we then show dual-
deniability implies semantic security and anonymity against CPA, sepa-
rates full robustness, and even contradicts key-less or mixed robustness,
while is (constructively) implied by key-deniability and full robustness
with a minor assumption for bits encryption. As for the availability of
dual-deniability, our main scheme is a generic approach from ciphertext-
simulatable PKE, where we devise a subtle multi-encryption schema to
hide the true message within random masking ciphertexts under plan-
ahead setting. Further, we leverage the weak model to present a more
efficient scheme having negligible detection probability and constant ci-
phertext size. Besides, we revisit the notable scheme (Sahai and Waters
in STOC ’14) and show it is inherently dual-deniable. Finally, we ex-
tend the Boneh-Katz transform to capture CCA security, deriving dual-
deniable and CCA-secure PKE from any selectively dual-deniable IBE
under multi-TA setting. Overall our work mounts the feasibility of anony-
mous messaging against coercion attacks.

Keywords: Deniable encryption · Anonymity· Key privacy · Generic
Construction · CCA security

1 Introduction

DENIABLE ENCRYPTION, introduced by Canetti et al. [10], is a seemingly contra-
dictory primitive, which allows a sender or receiver to freely produce fake but
convincing random coins interpreting the original ciphertext into any alternative
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message, and so makes post-coercion or bribery attacks meaningless. Compared
with the common semantic security under chosen-plaintext attacks, deniability
is a stronger requirement of data privacy against more hostile threats. In this
sense, deniable public key encryption is a key tool for building adaptively secure
cryptosystems, e.g., incoercible electronic voting [11, 16], multiparty computa-
tion [10], and searchable encryption [15].

ANONYMOUS ENCRYPTION. Besides the concern of data security, anonymity (or
key privacy) is also of crucial importance when protecting user’s privacy across
Internet applications. In the area of PKE, anonymity ensures that a valid ci-
phertext leaks nothing about the public key used to create it, i.e., the receiver
is anonymous from the view of any CPA/CCA adversary. This concept was first
formalized by Bellare et al. [4], where they also termed it as indistinguishability of
keys (IK). A hand-in-hand requirement with anonymity is robustness [1], which
keeps clear of miscommunication on anonymous encryption by guaranteeing the
ciphertexts against being valid under different recipients’ keys. Namely, one can
decrypt the ciphertext using her/his secret key, and learn that it is indeed for
her/himself iff the decryption result is not a failure.

CURRENT PROGRESS. There have been many advances towards the two direc-
tions. The seminal work [10] introduced several deniable flavors such as sender,
receiver, or bi-deniability. Following work further extends the functionalities:
O’Neill et al. [33] considered non-interactive bi-deniability; Sahai and Waters [35]
introduced public deniability where faking does not require the original random-
ness; Canetti et al. [13] further considered full deniability where both parties are
simultaneously coerced; Agrawal et al. [2] also studied the concept of deniable
fully homomorphic encryption. For anonymity, a sufficient condition starting
from semantic security is given in [28]. It has also been proved in [4,27,31] that
some known PKE schemes, e.g., ElGamal, Cramer-Shoup, and Kyber KEM, sat-
isfy IK-CPA/CCA. Besides, some serial work [1,23,26,27] also provided several
generic or scheme-oriented transforms that confer robustness for anonymity.

However, to the best of our knowledge, all the existing works on deniability
only scope data privacy, and none of the known anonymous encryption schemes
is resilient to coercion attacks. Below we elaborate more on this gap.

MOTIVATION. Let’s reconsider the issue in [10]: some adversary Eve has the power
to approach a sender Alice after seeing a ciphertext was transmitted from her
host, and demand to see all the private information: the plaintext, public key (of
receiver Bob), and random coins used for encryption (assuming that Alice is un-
able to erase these records). The known message-deniable PKE can only protect
the data privacy under such setting, i.e., Alice could produce fake randomness
related to fake plaintext but has to honestly reveal the used public key, and so
Eve learns that it is Bob who has communicated with Alice.

We stress that such enhanced coercion attacks bring much damage to the
anonymous systems, e.g., the notable cryptocurrency framework Zcash [5] or
auction systems [36], as the security of all these applications highly depends on
the assumption that no one can identify the receiver of some involved ciphertext



Deny Whatever You Want: Dual-Deniable Public-Key Encryption 3

from the valid users. Note that applying key-private encryption cannot help,
since it only enables the ciphertext to be unlinkable from the receiver (public
key), but has no guarantee of the indistinguishability between the sender’s iden-
tities. In this way, a coercer can still trace the anonymous ciphertext back to its
initiator, and then force Alice to disclose Bob. Even worse, Alice may later be
bribed and so will volunteer to sell out Bob. The above unsatisfactory situation
motivates us to think about the following question:

Can we achieve deniability regarding both data and key privacy?

OUR CONTRIBUTIONS. We tackle the above problem positively, our contributions
are summarized as follows.
- We formalize a new primitive: dual-deniable public key encryption, where
the sender can deny both the plaintext and the public key of a ciphertext.
Then we explore its relations with other security notions (Fig. 1), showing it
implies IND/IK-CPA, but contradicts key-less or mixed robustness, and can
be built from key deniability plus full robustness with a minor assumption.

- We present two generic constructions of dual-deniable public key encryption:
- The first is the main scheme, being a transform from any ciphertext-
simulatable PKE and one-way function, under plan-ahead setting.

- The second is a simplified variant of the first concerning a weak model,
having negligible detection probability and constant ciphertext size.

- We prove the known iO-based scheme is inherently dual-deniable, and pro-
vide an extended BK conversion of dual-deniable and IK/IND-CCA PKE,
from any dual-deniable IBE.

Dual-deniability

Key-deniability IK-CPA

FROB KROB/XROB

Message-deniability IND-CPA

Key-simulatability

Fig. 1. Relations among notions. A is the negative of A; Arrow→ (resp., barred arrow
9, extended arrow 7→) is an implication (resp., separation, constructive implication).

OVERVIEW OF OUR TECHNIQUES. In the following, we provide more technical
details of our contributions.
Concept of Dual-Deniability . Dual-deniable public key encryption (DDPKE)
supports a cooking algorithm Fake(pk,m, r, pk∗,m∗)→ r∗, by which the sender
can claim a real ciphertext ct of m under pk using coins r as the encryption of
m∗ under pk∗ using r∗. The coercer can rerun the encryption to verify such fake
confession of ct, while ct can still be correctly decrypted using sk. For provable
security, we require the following computational indistinguishability (Def. 10):
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D0 := (pk∗,m∗, r,Enc(pk∗,m∗; r))
c≈ D1 := (pk∗,m∗, r∗,Enc(pk,m; r)),

where the left is the honest encryption of m∗ under pk∗, and the right is the fake
opening of the ciphertext for m under pk. Also, we adopt the plan-ahead setting
widely considered in [2,10,33], where the fake pair (pk∗,m∗) is determined at the
beginning of encryption (Def. 12). Namely, algorithm Enc (resp., Fake) extends to
include such pair as auxiliary input (resp., output), leading to a relaxed demand
of indistinguishability between the fake opening of Enc(pk,m, pk∗,m∗; r) and
the honest one of Enc(pk∗,m∗, pk∗∗,m∗∗; r) w.r.t. randomly sampled (pk∗∗,m∗∗)
from public key set P := {pk, pk∗} and message spaceM.
Relations among Relevant Notions. We first argue that dual-deniability implies
both IND-CPA and IK-CPA (Prop. 1). The intuition is that coercion attacks
can be seen as an enhancement of CPA, in that the adversary A learns not only
the target public keys the messages, but also the randomness used in encryption.

Then we move to robustness concerning ciphertext collisions (Def. 4). Note
dual-deniability functionally makes for “equivocal” ciphertexts being simultane-
ously the encryptions of m under pk and m∗ under pk∗, so rejects key-less or
mixed robustness (Prop. 2), which exactly disallows collisions on distinct encryp-
tion materials. Yet, dual-deniability brings no impact on decryption phase, and
so is consistent with full robustness asking a ciphertext not to be decryptable
by distinct keys, though it does not further imply this inability (Prop. 3).

Finally we explore building dual-deniability from other notions. One natu-
ral idea is that it equals to the combination of two biased properties – message
and key deniability, e.g., first deny the message via r∗M ←$FakeM(pk,m, r,m

∗) and
then the key via r∗K ←$FakeK(pk,m

∗, r∗M , pk
∗). However, since the two notions only

ensure the deniability using real randomness r, we cannot further expect r∗K to
be indistinguishable from an already fake coin r∗M . Another attempt is to encrypt
twice in a KEM manner, by encrypting m using a one-time key pair (pkM, skM)
of an MDPKE, and encrypting skM using pkK of a KDPKE. But it also fails in
that the sender has to honestly reveal skM as KDPKE is only key-deniable, and
so lying about the first cipher is impossible.

These failures somehow inspire us to encrypt the message in a way that the
“plaintext” is independent of m. The feasible solution comes to “encrypting one
bit” within the decryption result by use of different keys. That is, ciphertext of
1 is encrypting 1 under pkK, which is decryptable under skK; and that of 0 is
encrypting 1 under random pkK 6= pkK, which would be undecryptable under skK
if full robustness – the impossibility of decryption collisions, is provided. Deli-
cately, such fresh pkK can be freely sampled once the underlying KDPKE also
delivers key-simulatability [20]. Finally, faking between the two types of encryp-
tion is available by switching the used public key via key-deniability. See Prop.
4 for the details of these reductions.

Generic Construction of Dual-Deniability . Despite the adoptive model, it is hard
to build DDPKE from the methods effective in message-deniable designs. E.g.,
in [10], description of a translucent set (TS) serves as a public key. But elements
of a TS when working with a real key are only supposed to be indistinguishable
from the uniform set over {0, 1}λ, and (as far as we know) cannot further be
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explained as the ones of another TS served as a fake key, which, however, is
the core task for key deniability. The only hope appears in a recent plan-ahead
scheme by An et al. [3] using ciphertext-simulatable PKE (Def. 5), which admits
oblivious sampling OEnc(; rO) of a ciphertext c and inverse sampling IEnc of
randomness rO from any c. The framework of [3] (Fig. 2) works as follows.
Its overall ciphertext ct of m consists of an OWF tag σ = H(u), and n sub-
ciphertexts {ci}i having two types according to the pattern of a random bit-
string s: for s[i] = 0, ci is randomly sampled from OEnc; for s[i] = 1, ci is a real
encryption of arbitrary mi||u under pk, except for the sole index t mapped from
s it embeds mt := m. The receiver decrypts each ci, verifies σ to recover s[i],
and so locates t. When coerced, the sender interprets ct as an oblivious element
by invoking IEnc, then flips s[t] to reveal a fake s∗ and t∗ (mapped from s∗),
such that ct can be explained as the encryption of the plan-ahead fake message
m∗ := mt∗ . As a result, the detecting probability is scaled by ∆(s, s∗) = Θ( 1√

n
)

(Thm. 1 of [3]).

pk pk pk pk ⋯⋯ ⋯𝑐1 𝑐2 𝑐𝑛𝑐𝑡−1𝑐𝑡∗ 𝑐𝑡 𝑐𝑡+1𝑚1||𝑢 ⋯ 𝑚∗||𝑢 𝑚||𝑢 ⋯
⋯

𝑚𝑡+1||𝑢
Fig. 2. Encryption style of [3] under random s over {0, 1}n. t and t∗ are uniquely
determined by s. {ci}s[i]=0 (lightgray) are sampled from OEnc; {ci}s[i]=1 (drakgray)
encrypt random mi||u under pk, except mt/mt∗ is the real/fake message m/m∗.

We are going to lift this suite up to the dual-deniable mode. We begin with
an unsuccessful attempt, which essentially leads to the final secure construction.
Observe that {ci} except ct carry no information of the real message m. Thus, ct
itself is functionally enough to support correct decryption, assuming all the other
ci would be termed as invalid under sk. Note that type-0 ci already mismatches
with σ with the design in [3]. We can further replace the rest type-1 {ci} with
those encrypted under pk∗, which would also be inconsistent with σ thanks to
one-wayness of H as well as semantic security of the used PKE. Moreover, the
deniability of key seems available: the sender still interprets ct as a type-0 cipher
and honestly reveals all the other randomness, aiming to explain ct as the overall
encryption ofmt∗ under pk∗. However, such falsehood is indeed distinguishable to
a coercer. This is because now the distribution of fake opening D1 only includes
one key pk∗; while the view of honest opening D0 may contain both pk∗ and
pk with probability 1/2, since in such case the auxiliary encryption randomness
pk∗∗, which is used to encrypt the auxiliary type-1 {ci}, is randomly sampled
from P := {pk, pk∗}.

Intuitively, in order to get rid of the above difference, we shall mess up those
masking sub-ciphertexts {ci}s[i]=1∧i 6=t,t∗ , i.e., make them encrypt random mi

using pk or pk∗ with equal probability. Also, we need to enable the receiver to
identify ct as before. To these effects, we arrange all the type-1 masks after the
index t, such that ct will instead be the very first valid sub-ciphertext under
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sk. But this change naturally requires t (resp., t∗) to always be the first bit-1
of s (resp., s∗), which is impossible for a random s. Fortunately, under this
twisted rule of decryption, we actually no longer need the seed s to locate t or
ct. In particular, we switch to directly sample the target index t←$ [n− 1], and
simply set the plan-ahead fake index t∗ = t + 1. Further, all the obliviously-
sampled (type-0) elements are placed before t. A brief scope on this new fit
of {ci} is illustrated in Fig. 3. Upon coercion, the sender still explains ct as
an oblivious cipher and reveals t∗ as well as the other real randomness, so to
dishonestly open ct as the ciphertext of m∗ under pk∗ using fake auxiliary input
(pk∗∗,m∗∗) := (pkt∗+1,mt∗+1), a random pair from P × M. In this way, the
view of fake opening only differs from that of real opening in the distribution
of t∗ ∈ [2, n], whose distance from t is clearly 1

n−1 . Finally, recall that DDPKE
implies MDPKE, then our construction can also be seen as an improved MDPKE
with better detection probability than the baseline in [3].

⋯ ⋯𝑐2 𝑐𝑛𝑐𝑡 𝑐𝑡∗ 𝑐𝑡+2𝑐𝑡−1𝑐1 pk∗pk pk𝑡+2𝑚||𝑢 𝑚∗||𝑢 𝑚𝑡+2||𝑢
pk𝑛𝑚𝑛||𝑢

Fig. 3. Encryption style of our scheme under random t over [n− 1]. t∗ = t+1. {ci}i<t

(lightgray) are sampled from OEnc; {ci}i≥t (drakgray) encrypt random mi||u under
random pki, except (pkt,mt)/(pkt∗ ,mt∗) is the real/fake pair (pk,m)/(pk∗,m∗).

More Efficient Transform under Weak Model . Now we consider a weak flavor of
deniability introduced in [10], which allows an extra encryption algorithm DEnc.
The sender can first run DEnc and later equivocate that Enc is invoked (Def.
10).

Below we show how to simplify the above design in such weak model. Orig-
inally, we have to evaluate the difference between D0 and D1 within the fixed
algorithm Enc. That distance depends heavily on the offset of the fake index t∗,
which induces a polynomial factor n. But here, by use of two spare encryption
algorithms, we can freely explain an execution of DEnc using t as one of Enc
using t∗, without having any requirements on their similarities. Namely, the pa-
rameter n can be minimized to 2, leading t = 1 and t∗ = 2. Concerning these
constants, DEnc plays the role of the standard encryption:

c1←$ E .Enc(pk,m||u), c2←$ E .Enc(pk∗,m∗||u);
while Enc serves as fake opening by “flipping” c1 as an obliviously sampled one:

c1←$ E .OEnc(ik), c2←$ E .Enc(pk,m||u).
In this way, the detecting probability only depends on the distinguishability
between a real encryption and an obliviously sampled one, which, is negligible
by ciphertext-simulatability of the underlying PKE.

Revisit of iO-based Scheme. [35] have presented a notable message-deniable
scheme based on indistinguishability obfuscation (iO), where the authors also
introduced a special feature of deniability called public explanation, asking con-
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vincing randomness r∗ of ct can be generated from Fake(pk,m, ct) without the
original coin r that creates ct. [35] pointed out that message-deniability is im-
plied by such property plus IND-CPA, we further prove that dual-deniability is
also in hand with the help of IK-CPA. The intuition behind is r∗ is indepen-
dent of r, so we can embed the CPA ciphertext into the dual-deniable challenge.
Namely, start with the honest case (r, c0 = Enc(pk∗,m∗; r)), first hop to (r∗, c0)
where r∗←$Fake(pk∗,m∗, c0), by the security of public explanation the two hy-
brids are indistinguishable; then move to (r∗, c′1 = Enc(pk,m∗; r)), the indistin-
guishability comes from IK-CPA over c0 and c′1; finally arrive at the fake case
(r∗, c1 = Enc(pk,m; r)), and the indistinguishability comes from IND-CPA over
c′1 and c1. Since in [35] the scheme was proved to be IND-CPA (IK-CPA trivially
follows) and publicly explainable, it is then inherently dual-deniable. Below we
summarize in Table. 1 the caveats of the above three DDPKE constructions.

Scheme Methods Message space Detecting probability Model Setting

Ours-I CSPKE {0, 1}` 1/poly(λ) Standard Plan-ahead
Ours-II CSPKE {0, 1}` negl(λ) Weak Plan-ahead

[35] iO {0, 1} negl(λ) Standard Normal

Table 1. Caveats of the involved DDPKE schemes. λ is the security parameter, ` is a
function of λ associated with the underlying CSPKE.

CCA-secure Conversions. We finally consider capturing both dual-deniability
and CCA security. One may expect that CCA security of our two schemes nat-
urally comes from that of the used PKE. However, as we expound in §.6.1, it
is wrong in that the adversary can query the decryption oracle with specific ci-
phertext reassembled from some ci of the challenge ct, so to learn the questioned
b. Thus, we turn to achieving the two properties in one shot. Although there
are well-studied paradigms for CCA security, many (e.g., Fujisaki-Okamoto [24],
Naor-Yung [32]) take auxiliary matching operations on the plaintext and so reject
any sense of deniability. The only survivor is the IBE-based framework [7, 12],
whose extra element is just a MAC for the validity of the ciphertext, and so
denying the encryption contents does not influence this check.

Recall that the Boneh-Katz (BK) transform [7] takes the master key of IBE
as the public key of PKE. Then the anonymity of such fashion hinges on the
key privacy of IBE master keys, and so we step to formalize dual-deniability
of IBE under the setting of multiple trusted authorities (Def. 14). Further, we
show how to promote the BK transform to the dual-deniable setting, i.e., gaining
dual-deniable and CCA-secure PKE from any selectively multi-TA dual-deniable
IBE. Accordingly, Such IBE can be derived by applying our first mechanism to
any ciphertext-simulatable multi-TA IBE.

OTHER RELATED WORKS. Besides the notion of message-deniability, Canetti et
al. [10] also formalized receiver-deniability, where the receiver can generate a fake
key decrypting the target ciphertext to a fake message; O’Neill et al. [33] further
utilized lattice-based bi-translucent sets and simulatable encryption [17] to build
weak bi-deniable schemes; Caro et al. put forth the deniable FE and presented a
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receiver-deniable scheme based on iO and delayed trapdoor circuits [14]; Apart
from the bit-related encryption schema, An et al. [3] also examined some side-
channel ((e.g., power or timing) attacks against deniability; By use of iO, Canetti
et al. [13] achieved fully interactive deniability, where the bribed parties’ claims
can be inconsistent; Agrawal et al. [2] resort to bootstrapping for obliviously gen-
erating homomorphic ciphertexts, they then introduced the deniable FHE with
some instantiations from classic LWE; Coladangelo et al. [18] explored message
deniability where the encryption is performed within a quantum program, and
also proposed a construction assuming the quantum hardness of LWE.

For theoretical lower bounds, Bendlin et al. [6] showed that non-interactive
receiver-deniable PKE with negligible detecting probability cannot have poly-
nomial key size; Dachman-Soled [19] proved that sender deniability with super-
polynomial security cannot be derived from black-box use of simulatable PKE.

ORGANIZATION. In the forthcoming sections, we first recall some necessary pre-
liminaries in §.2. Then §.3 presents the model of DDPKE and its relations to the
relevant notions. §.4 proposes a generic approach of plan-ahead DDPKE from
ciphertext-simulatable PKE. §.5 provides a more efficient framework under the
weak model and revisits the existing iO-based scheme. §.6 describes a general
transform of CCA-secure DDPKE from any DDIBE with multi-TA setting.

2 Preliminaries

Notations. Let λ ∈ N denote the security parameter. Function f(λ) is negligible
(resp., polynomial) if it is O(λ−c) for all c > 0 (resp., O(λc) for some constant
c > 0), and is denoted as negl(λ) (resp., poly(λ)). f(λ) is abbreviated as f
where clear from context. Denote by y←$F(x) that a randomized algorithm
F outputs y on input x, and by y := F(x; r) that specifies the randomness
r of F . Let integer set [n] := {1, . . . , n} and [m,n] := {m, . . . , n}. Let bold
lower-case letters, e.g., s, be a bit-string. Denote by x←$X sampling uniformly
at random from finite set X , and by y←$D sampling over the distribution
D. Denote the statistical distance between y1←$D1 and y2←$D2 over X as
∆(y1, y2) =

1
2

∑
x∈X
|D1(x)−D2(x)| .

2.1 Model of Public Key Encryption

Definition 1 (PKE). A PKE scheme E for message spaceM consists of four
polynomial-time algorithms 〈Gen,KGen,Enc,Dec〉 with the following interfaces:

• Gen(1λ): On input the security parameter λ, the probabilistic initial key gen-
eration algorithm returns an initial key ik.

• KGen(ik): On input an initial key ik, the probabilistic key generation algo-
rithm returns a public/secret key pair (pk, sk).

• Enc(pk,m): On input a public key pk and a message m, the probabilistic
encryption algorithm returns a ciphertext ct.
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• Dec(sk, ct): On input a secret key sk and a ciphertext ct, the deterministic
decryption algorithm returns a message m ∈M or ⊥ to declare a failure.

Remark 1. Following [4], the initial key ik is introduced to argue anonymity
between different pk; W.l.o.g., we assume pk (resp., sk) always contains the
corresponding ik (resp., pk), and each pk associates with the sameM⊆ {0, 1}∗.
Correctness. E is said to be correct if, for all security parameter λ ∈ N, initial
key ik←$Gen(1λ), key pair (pk, sk)←$KGen(ik), and message m ∈ M, it holds
that P

[
Dec

(
sk,Enc(pk,m)

)
= m

]
= 1− negl(λ).

Below we review the basic security notions of PKE, where we denote the
usual term “IND-CPA/CCA” as IM-CPA/CCA, mainly to emphasize that they
are about the privacy of messages.

Definition 2 (CCA Security). E is IM-CCA (resp., IK-CCA) if for all PPT
adversary A := (A1,A2), the absolute difference of probability of returning 1
between experiment ExpIM-0

A (resp., ExpIK-0
A ) and ExpIM-1

A (resp., ExpIK-1
A ) is

negligible.

Experiment: ExpIM-b
A (1λ)

ik←$Gen(1λ).
(pk, sk)←$KGen(ik).
(m0,m1, st)←$ADsk(·)

1 (pk).
ct←$Enc(pk,mb).
b′←$ADsk(¬ct)

2 (ct, st).
Return b′.

Experiment: ExpIK-b
A (1λ)

ik←$Gen(1λ).
(pk0, sk0)←$KGen(ik), (pk1, sk1)←$KGen(ik).
(m, st)←$ADsk0

(·),Dsk1
(·)

1 (pk0, pk1).
ct←$Enc(pkb,m).
b′←$ADsk0

(¬ct),Dsk1
(¬ct)

2 (ct, st).
Return b′.

In the above games, st contains all the internal states of A1 in find phase,
m0,m1 ∈ M and |m0| = |m1|, decryption oracle Dsk on input ct outputs m :=
Dec(sk, ct). Definitions of IM/IK-CPA take only one change: A has no access to
any decryption oracles. We say a PKE scheme E is CCA-secure (resp., CPA-
secure) if it is both IM-CCA (resp., IM-CPA) and IK-CCA (resp., IK-CPA).

2.2 Message-Deniability and Robustness of PKE

We recall the notion – deniability of messages introduced in [10], which is relative
to the encryption randomness of Enc over space RE, and in particular introduces
an additional PPT algorithm Fake for producing fake randomness:
• Fake(pk,m, r,m∗): On input a public key pk, a message m, randomness r of
the original encryption, and a fake message m∗, return fake randomness r∗.

Accordingly, it should be satisfied that for any maliciously-selected m,m∗ ∈
M, the fake opening (pk,m∗, r∗) of ciphertext ct1 actually form is indistinguish-
able from the honest opening (pk,m∗, r) of ct0 exactly for m∗.

Definition 3 (Deniability of Messages). E satisfies deniability of messages
if for all PPT adversary A := (A1,A2), the absolute difference of probability of
returning 1 between experiment ExpMD-1

A and ExpMD-0
A is negligible.
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Experiment: ExpMD-b
A (1λ)

ik←$Gen(1λ), (pk, sk)←$KGen(ik).
(m,m∗, st)←$A1(pk).
r←$RE, r

∗←$Fake(pk,m, r,m∗).
For b = 0, D0 := (r,Enc(pk,m∗; r)).
For b = 1, D1 := (r∗,Enc(pk,m; r)).
b′←$A2(Db, st).
Return b′.

Remark 2. In this work, we also consider a common relaxed condition where the
non-trivial advantage of A is instead an inverse polynomial [2,10,33]. We say E
is f(λ)-deniable if f(λ) = 1

poly(λ) , and omit the notation f when f(λ) = negl(λ).

Then we recall key-less robustness (KROB), mixed robustness (XROB), and
full robustness (FROB) w.r.t. different types of ciphertext collisions. Combina-
tion of the three notions implies any other known flavors of robustness [1,23,31].

Definition 4 (KROB, XROB, FROB). E satisfies key-less (resp., mixed,
full) robustness if for all PPT adversary A, the probability of returning 1 for
experiment ExpKROB

A (resp., ExpXROB
A , ExpFROB

A ) is negligible,

Experiment: ExpKROB
A (1λ)

ik←$Gen(1λ).
(m0,m1, pk0, pk1, r0, r1)←$A(ik).
ct0 := Enc(pk0,m0; r0).
ct1 := Enc(pk1,m1; r1).
Return (pk0 6= pk1) ∧ (ct0 = ct1 6=⊥).

Experiment: ExpXROB
A (1λ)

ik←$Gen(1λ).
(m0, pk0, r0, sk1)←$A(ik).
ct0 := Enc(pk0,m0; r0).
m1 := Dec(sk1, ct0).
Return (pk0 6= pk1) ∧ (m0 6=⊥)

∧(m1 6=⊥).
Experiment: ExpFROB

A (1λ)

ik←$Gen(1λ).
(ct, sk0, sk1)←$A(ik).
m0 := Dec(sk0, ct), m1 := Dec(sk1, ct).
Return (pk0 6= pk1) ∧ (m0 6=⊥) ∧ (m1 6=⊥).

where it is implicitly required that m0 ∈M and m1 ∈M.

2.3 Ciphertext(Key)-Simulatable Public Key Encryption

Simulatable PKE [20,30] has been explored for a while to construct deniable sys-
tems [19,33]. Below we recall its relaxed variant called ciphertext-simulatability
[3], which admits oblivious sampling (OEnc) from the ciphertext space, as well as
the inverting sampling (IEnc) that interprets a real ciphertext as an obliviously
sampled one by use of the original encryption materials.
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Formally, a ciphertext-simulatable PKE scheme E consists of universal al-
gorithms 〈Gen,KGen,Enc,Dec〉 plus two PPT algorithms 〈OEnc, IEnc〉, and the
sampling randomness space w.r.t. OEnc is specified as RO.

• OEnc(ik; rO): On input an initial key ik, use randomness rO←$RO to sample
a simulated ciphertext ct.

• IEnc(pk,m, rE): On input a public key pk, a message m, and randomness rE,
return simulated randomness r∗O.

Definition 5 (Ciphertext-Simulatability). E is ciphertext-simulatable if for
all PPT adversary A := (A1,A2), ik←$Gen(1λ), (pk, sk)←$KGen(ik), (m, st)←$

A1(pk), (rE, rO)←$RE ×RO, ct0 := Enc(pk,m; rE), ct1 := OEnc(ik; rO), it holds
∣∣∣ P[A2(st, ct0, IEnc(pk,m, rE)) = 1]− P[A2(st, ct1, rO) = 1]

∣∣∣ = negl(λ),

where we require m ∈M and the probabilities are taken over the randomness of
ik, (pk, sk), rE, rO, and the one internally used by A.

Note that algorithm OEnc only takes the initial key ik as input, so ciphertext-
simulatability implies both IM-CPA and IK-CPA. Most of the known PKE
schemes have been proved to meet such property, e.g., ElGamal and Cramer-
Shoup instantiated with simulatable groups [21], anonymous RSA-OAEP [4],
and Kyber [8]. See [4, 17,20,21,27,30,33] for more details.

Regarding security proof of Prop. 4, we also require key-simulatability, another
relaxed notion from the original simulatability [20]. Instead of ciphertexts, such
property concerns the sampling of public keys, which delivers oblivious sampling
(OKGen) from the public key space w.r.t. an initial key ik, as well as the invert-
ing sampling (IKGen) that comes up with the sampling randomness k associated
with a public key pk, such that OKGen(ik; IKGen(pk)) = pk. Formally, a key-
simulatable PKE scheme E consists of universal algorithms 〈Gen,KGen,Enc,Dec〉
plus PPT algorithms 〈OKGen, IKGen〉, where we specify the key sampling ran-
domness space as RK.

• OKGen(ik; k): On input an initial key ik, use randomness k←$RK to generate
a simulated public key pk.

• IKGen(pk): On input a public key pk, return simulated randomness k∗.

Definition 6 (Key-Simulatability). E is key-simulatable if for all PPT ad-
versary A, ik←$Gen(1λ), (pk, sk)←$KGen(ik), k←$RK, it holds

∣∣∣ P[A(pk, IKGen(pk)) = 1]− P[A(OKGen(ik; k), k) = 1]
∣∣∣ = negl(λ).

Note that IKGen does not require the randomness used in KGen as input.
Thus, the above definition ensures that whatever knowledge one could learn
from sampling a key pk using OKGen, one could also derive from only pk itself.
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2.4 Message Authentication Code and Commitment Schemes

A simplified MAC scheme consists of two polynomial-time algorithms 〈Mac,Vry〉:
probabilistic Mac(k,m) returns an authentication code tag of m under secret key
k; deterministic Vry(k,m, tag) returns 0/1 as the verification result of tag w.r.t. k
andm. We require that for all k ∈ {0, 1}λ andm ∈ {0, 1}∗, Vry(k,m,Mac(k,m)) =
1. Below we define the one-time strong unforgeability of MAC.

Definition 7 (One-time Strong Unforgeability). A MAC scheme is one-
time strongly unforgeable if for all PPT adversary A := (A1,A2), (m, st)←$A1(1

λ),
k←$ {0, 1}λ, tag←$Mac(k,m), and (m∗, tag∗)←$A2(tag, st), it holds that

P
[
Vry(k,m∗, tag∗) = 1 ∧ (m∗, tag∗) 6= (m, tag)

]
= negl(λ).

Then we move to “weak” commitment scheme [7], a 3-tuple of PPT algorithms
〈CGen,Samp,Open〉. CGen(1λ) returns a public parameter par; Samp(par) returns
a triple (m, com, dec) with m ∈ {0, 1}λ and dec ∈ {0, 1}β(λ); Open(par, com, dec)
returns a message m ∈ {0, 1}λ or ⊥. We require that for all par←$CGen(1λ) and
(m, com, dec)←$Com(par), Open(par, com, dec) = m. Below we define computa-
tional hiding and biding properties of a weak commitment scheme.

Definition 8 (Security of Commitment). A commitment scheme satisfies
hiding if for all PPT adversary A, par←$CGen(1λ), b←$ {0, 1}, m0←$ {0, 1}λ,
and (m1, com, dec)←$ Samp(par), it holds that∣∣∣ P[ b′ = b | b′←$A(par, com,mb) ]− 1/2

∣∣∣ = negl(λ),

and binding if for all PPT adversary A, par←$CGen(1λ), and (m, com, dec)←$

Samp(par), it holds that

P
[
Open(par, com, dec′) /∈ {m,⊥} | dec′←$A(par,m, com, dec)

]
= negl(λ).

3 Defining Dual-Deniable Public Key Encryption

Message deniability can be seen as a feasible shield over data privacy in context
of active attacks. However, there are lots of applications (e.g., authenticated
key exchange, anonymous credentials, or electronic auction [9,22,36]) for secure
messaging where key privacy is also requested.
As mentioned in §.1, we already have some countermeasures like anonymous

encryption [4] under the CPA/CCA setting, which ensures the indistinguisha-
bility between ciphertexts under different public keys. But they are no longer
effective if more advanced coercion/bribery attacks are applied. Thus, we are
motivated to formalize the similar notion of message deniability concerning key
privacy, named key-deniability (KD), where a sender being forced to reveal the
public key and the randomness used for encryption, can convincingly provide
fake randomness to claim any valid receiver with whom the sender pretends that
it has communicated. We further endow the coerced sender with the freedom to
interpret the ciphertext as any message under any public key, and we call this
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property dual-deniability. Obviously, this property is the most desirable one in
practice, as it allows deniability to the greatest extent.
We begin with defining key-deniable and dual-deniable PKE, then show some

theoretical relations between the involved security notions, and finally formalize
a relaxed variant of DDPKE under plan-ahead setting.

3.1 Key-Deniability and Dual-Deniability

Key deniability supports opening a ciphertext ct under a dishonest (fake) public
key pk∗, i.e., a fake randomness r∗ associated with pk∗ can be generated by use
of the real encryption materials (pk,m, r) of ct, as long as pk∗ shares the same
ik (i.e., the same PKI authority) of the real key pk.
Formally, a KDPKE scheme E := 〈Gen,KGen,Enc,Dec,Fake〉 has the first four

universal algorithms, while algorithm Fake is converted as follows:

• Fake(pk,m, r, pk∗): On input a public key pk, a message m, randomness r of
the original encryption, and a fake public key pk∗, return fake randomness r∗.

Analogous to Def. 3, key-deniability requires the indistinguishability between
an honest opening under the fake key pk∗ and the fake opening under the real
key pk, which are captured as the following codes.

Definition 9 (Deniability of Keys). E satisfies deniability of keys if for all
PPT adversary A := (A1,A2), the absolute difference of probability of returning
1 between experiment ExpKD-1

A and ExpKD-0
A is negligible.

Experiment: ExpKD-b
A (1λ)

ik←$Gen(1λ), (pk, sk)←$KGen(ik), (pk∗, sk∗)←$KGen(ik).
(m, st)←$A1(pk, pk

∗).
r←$RE, r

∗←$Fake(pk,m, r, pk∗).
For b = 0, D0 := (r,Enc(pk∗,m; r)).
For b = 1, D1 := (r∗,Enc(pk,m; r)).
b′←$A2(Db, st).

Return b′.

Combining the two one-sided notions, we are ready to present the model of
DDPKE, where a sender can opt for whatever she/he wants to reveal. Namely,
algorithm Fake now takes into consideration both fake message and public key:

• Fake(pk,m, r, pk∗,m∗): On input a public key pk, a message m, randomness
r of the original encryption, and a fake public key pk∗ and message m∗,
return fake randomness r∗.

Weak DDPKE. We also adapt the weak model [10] to dual-deniability, where
the sender can first encrypt under an alternative algorithm DEnc and later claim
that it has executed Enc. The newly-introduced encryption algorithm DEnc has
an unchanged interface except a different encryption randomness space RDE.
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Definition 10 ((Weak) Dual-Deniability). A DDPKE scheme satisfies dual-
deniability (resp., weak dual-deniability) if for all PPT adversary A := (A1,A2),
the absolute difference of probability of returning 1 between experiment ExpDD-1

A
and ExpDD-0

A (resp., ExpwDD-1
A and ExpwDD-1

A ) is negligible.

Experiment: ExpDD-b
A (1λ)

ik←$Gen(1λ).
(pk, sk), (pk∗, sk∗)←$KGen(ik).
(m,m∗, st)←$A1(pk, pk

∗).
r←$RE, r

∗←$Fake(pk,m, r, pk∗,m∗).
For b = 0, D0 := (r,Enc(pk∗,m∗; r)).
For b = 1, D1 := (r∗,Enc(pk,m; r)).
b′←$A2(Db, st).
Return b′.

Experiment: ExpwDD-b
A (1λ)

ik←$Gen(1λ).
(pk, sk), (pk∗, sk∗)←$KGen(ik).
(m,m∗, st)←$A1(pk, pk

∗).
r←$RE, r

′←$RDE.
r∗←$Fake(pk,m, r′, pk∗,m∗).
For b = 0, D0 := (r,Enc(pk∗,m∗; r)).
For b = 1, D1 := (r∗,DEnc(pk,m; r′)).
b′←$A2(Db, st).
Return b′.

Naturally, for weak DDPKE, the other related security requirements should
hold w.r.t. both Enc and DEnc. We give more discussions on the theoretical
necessity and practical applications of weak DDPKE at App. A.

3.2 Relations between Deniability and Other Notions

In §.2, we review several primary notions for the consistency and privacy of PKE.
Now we explore the relations (implications or separations) between these and
deniable notions.

(Weak) Deniability implies CPA security. The intuition is that coercion
attacks can be seen as a proactive variant of CPA, where the ability of the
adversary is enhanced to approach the entire information of the target ciphertext
including the used message, public key, and the internal randomness.

Proposition 1. Suppose a PKE scheme E is (weakly) dual-deniable (resp., key-
deniable, message-deniable), then it is CPA-secure (resp., IK-CPA, IM-CPA).

Proof. We begin with the arguments for dual-deniability. First consider the im-
plication of IK-CPA, suppose there is a CPA adversary A succeeds in ExpIK-b

A
with non-negligible advantage ε, then we can build a PPT algorithm B that
breaks dual-deniability of E with also non-negligible advantage ε. Let ik←$Gen(1λ),
(pk, sk)←$KGen(ik), (pk∗, sk∗)←$KGen(ik). First B forwards (pk, pk∗) to A, with
which A picks m ∈ M and submits it to B. Then B sends (m,m) to the chal-
lenger, getting back an instance Db := (rb, ctb). Finally, B passes ctb to A and
simply relays A’s answer to the challenger. The non-negligible advantage of B
derives from the fact that ctb = Enc(pk∗,m; r) for b = 0 or Enc(pk,m; r) for
b = 1, which is exactly the corresponding challenge of the IK-CPA game. The
implication of IM-CPA is nearly the same as above, so we omit the detailed
argument for brevity.
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Then, we move to the weak-mode cases. We are going to prove that both
〈Gen,KGen,Enc,Dec〉 and 〈Gen,KGen,DEnc,Dec〉 are IM-CPA if E is weakly
dual-deniable. To argue that ct0←$Enc(pk,m0) and ct1←$Enc(pk,m1) are in-
distinguishable, we take pk = pk∗ := pk, m := m0 and m∗ := m1, then by weak
dual-deniability we have ct1 is indistinguishable from ct′0 = DEnc(pk,m0). Next,
we further change m = m∗ := m0, again by weak dual-deniability we have ct′0
is indistinguishable from ct0. Combining these analysis, we have ct1

c≈ ct0. The
same techniques can be used to prove that 〈Gen,KGen,DEnc,Dec〉 is IM-CPA.
It remains to prove that the two sub-schemes are also IK-CPA. To show

ct0←$Enc(pk0,m) and ct1←$Enc(pk1,m) are indistinguishable, we take pk :=
pk0, pk

∗ := pk1, and m = m∗ := m, then by weak dual-deniability we have ct1 is
indistinguishable from ct′0 = DEnc(pk0,m). Further, we change pk∗ := pk0, again
by weak dual-deniability we have ct′0 is indistinguishable from ct0. Combining
these hops, we have ct1

c≈ ct0. The same techniques can be used to prove that
〈Gen,KGen,DEnc,Dec〉 is IK-CPA.

Dual (Key)-Deniability contradicts KROB and XROB. This statement
comes from that dual (key)-deniability enables an encryption ofm under pk to be
explained as one of m∗ under pk∗, essentially leading to an encryption collision.

Proposition 2. Suppose a PKE scheme E satisfies deniability of keys or dual-
deniability, then it is neither key-less robust nor mixed robust.

Proof. We first show how an adversaryA can produce the tuple (m0,m1, pk0, pk1,
r0, r1), for which the game ExpKROB

A returns 1 with overwhelming probability.
A honestly runs ik←$Gen(1λ), (pk0, sk0), (pk1, sk1)←$KGen(ik), if pk0 = pk1
which only occurs with negligible probability by the CPA security (induced by
dual-deniability) of E , resamples these keys. Next,A samplesm0←$M, r0←$RE,
and generates ct0 := E .Enc(pk0,m0; r0). Then A samples another m1←$M, and
invokes E .Fake(pk0,m0, r0, pk1,m1) to get r1. By the dual-deniability of E , it
holds that P[E .Enc(pk1,m1; r1) = ct0] = 1−negl(λ), thus (m0,m1, pk0, pk1, r0, r1)
is a successful output of A against the KROB of E .
Then we construct a tuple (m0, pk0, r0, ct1, sk1) for which game ExpXROB

A al-
ways returns 1. A honestly runs ik←$Gen(1λ), (pk0, sk0), (pk1, sk1)←$KGen(ik).
Next, A samples m1←$M, r1←$RE, and generates ct1 := E .Enc(pk1,m1; r1).
A further samples m0←$M and r0←$ E .Fake(pk1,m1, r1, pk0,m0). By dual-
deniability and correctness of E , it holds that P[E .Enc(pk0,m0; r0) = ct1] =
1− negl(λ) and P[E .Dec(sk1, ct1) = m1] = 1− negl(λ), thus (m0, pk0, r0, sk1) is a
successful output of A against the XROB of E .

Dual-Deniability separates FROB. Finally, we shall demonstrate a separa-
tion result, i.e., dual-deniability does not imply FROB. To this effect, it suffices
to show that there is a dual-deniable PKE scheme that is not FROB, which can
be derived from the iO-based framework iDE in [35].

Proposition 3. Suppose that there exists indistinguishability obfuscation, then
we can build a PKE scheme that is dual-deniable but not fully robust.
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Proof. First, we will later in §.5.2 prove that the message-deniable construction
iDE is also dual-deniable. Besides, the decryption procedure of iDE adopts the
exact secret key and decryption algorithm of its underlying PKE scheme. Thus,
we can use a non-FROB PKE (e.g., ElGamal) to obtain a non-FROB and dual-
deniable instance of iDE , as required by the separation.

However, we stress that dual-deniability does not further reject FROB. In
particular, we can also use an FROB PKE (e.g., the one proposed in [23]) to
earn an instance of iDE being both FROB and dual-deniable. This is abstractly
because though dual-deniability destroys the one-to-one map between the en-
cryption and ciphertext, it brings no impact on the decryption procedure, thus
giving hope for arguing the robustness on decryption consistency.

3.3 Relations within Deniable Notions

Dual-deniability trivially implies deniability of messages or keys, by restricting
the game to return ⊥ whenever m 6= m∗ or pk 6= pk∗. However, we fail to prove
the reverse statement that it can be derived from the two partial notions. One
natural attempt is to encrypt twice in a KEM manner, i.e., encrypt m as ctM
using a one-time key pair (pkM, skM) from an MDPKE, and encrypt skM as ctK
using the long-term key pkK from a KDPKE. However, the fatal fault is that one
has to honestly reveal skM since KDPKE is only key-deniable, and so any fake of
ctM can be trivially caught as the coercer itself can decrypt ctM via skM.
Then we explore combining key deniability with other properties to achieve

dual-deniability, and it is robustness that works. In more detail, we devise a
subtle bit-encryption fashion such that the message is hidden in the decryption
result (success or failure). Namely, ciphertext of 1 encrypts under pk; ciphertext
of 0 encrypts under another fresh pk 6= pk. In this way, a receiver obtains bit 0/1
by testing if the ciphertext can be decrypted under sk, this is rightly ensured by
full robustness of the used PKE. The remaining issue is how to obtain a fresh
pk. In real-world applications, the sender can easily take pk as the public key of
another system user. Yet, for theoretical sake, we need the used PKE to also meet
key-simulatability (Def. 6), which admits two helper algorithms 〈OKGen, IKGen〉
for sampling public keys.

Proposition 4. Suppose there is a fully robust and key-simulatable KDPKE
scheme E for bits, then we can build a DDPKE scheme DE for bits.

Proof. The construction of DE is as follows, where we denote by RE (resp., RK)
the encryption (resp., oblivious public key sampling) randomness space of E .

• Gen(1λ): Return ik←$ E .Gen(1λ).
• KGen(ik): Return (pk, sk)←$ E .KGen(ik).
• Enc(pk, b;R): Sample R := (k, r)←$RK×RE, and conduct the following two

branches for generating ct:
- For b = 0, ct := E .Enc(pk, 1; r) where pk := E .OKGen(ik; k).
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- For b = 1, ct := E .Enc(pk, 1; r).
• Dec(sk, ct): d := E .Dec(sk, ct), return 1 if d = 1, or 0 otherwise.
• Fake(pk, b,R, pk∗, b∗): Retrieve pk := E .OKGen(ik; k), set k∗ := k, and per-

form the following branches for generating r∗ of R∗:
- For b∗ = 0, if b = 0, set r∗ := r; else, sample r∗←$ E .Fake(pk, 1, r, pk).
- For b∗ = 1, if b = 0, sample r∗←$ E .Fake(pk, 1, r, pk∗); else, sample
r∗←$ E .Fake(pk, 1, r, pk∗).

For b = 1, correctness of DE trivially follows from that of E ; For b = 0,
we have by key-simulatability and IK-CPA (induced by key-deniability) of E , the
randomly sampled key pk 6= pk with overwhelming probability, and then correct-
ness follows from full robustness of E . Below we further attest dual-deniability.

Claim 1. DE is dual-deniable assuming E is key-deniable and key-simulatable.

Proof. The intuition is that k takes no side information except the fresh key
pk, due to key-simulatability of E , and the fake r∗ is indistinguishable from the
honest r by key-deniability of E . Below we expound on these reductions.
Let ik←$Gen(1λ), (pk, sk), (pk∗, sk∗)←$KGen(ik), (b, b∗, st)←$A1(pk, pk

∗), the
goal of A2 is to distinguish between the following two games:

Game 0 . This is the honest opening case ExpDD-0
A w.r.t. the encryption of b∗

under pk∗, A2 is actually given
DH =

(
R := (k, r), ct0 := E .Enc(pkH, 1; r), st

)
,

where R is sampled w.r.t. (pk∗, b∗) as in Enc, and pkH is assigned as pk∗ for
b∗ = 1 or E .OKGen(ik; k) for b∗ = 0.

Game 1 . This is the fake opening case ExpDD-1
A w.r.t. the encryption of b, the

view of A2 changes into:
DF =

(
R∗ := (k∗, r∗), ct1 := E .Enc(pkF, 1; r), st

)
,

where (k, r)←$RK×RE, pkF is taken as pk for b = 1 or E .OKGen(ik; k) for b = 0,
and R∗ is sampled from Fake(pk, b, (k, r), pk∗, b∗).

Now we consider the four possible values of (b, b∗) chosen by A1:
− (b, b∗) = (1, 1), the outside view of (DH, DF) is:(

k, r, ct0 := E .Enc(pk∗, 1; r)
)
,
(
k, r∗, ct1 := E .Enc(pk, 1; r)

)
,

where (k, r)←$RK × RE and r∗←$ E .Fake(pk, 1, r, pk∗). Note that k is just
a random element over RK. Thus, (DH, DF) can be seen as a valid instance
pair w.r.t. m = 1 and (pk, pk∗) for the key-deniable game against E .

− (b, b∗) = (0, 1), the outside view of (DH, DF) is:(
k, r, ct0 := E .Enc(pk∗, 1; r)

)
,
(
k, r∗, ct1 := E .Enc(pk, 1; r)

)
,

where (k, r)←$RK ×RE and r∗←$ E .Fake(pk, 1, r, pk∗) for a fresh public key
pk := E .OKGen(ik; k). Note that by key-simulatability of E , pk is compu-
tationally indistinguishable from the one randomly sampled by E .KGen(ik),
and k is further computationally indistinguishable from the one simulated by
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E .IKGen(pk), which leaks no extra information except pk itself. Thus, (DH, DF)
can also be seen as a valid instance pair w.r.t. m = 1 and (pk, pk∗) for the
key-deniable game against E .

− (b, b∗) = (1, 0), the outside view of (DH, DF) is:(
k, r, ct0 := E .Enc(pk, 1; r)

)
,
(
k, r∗, ct1 := E .Enc(pk, 1; r)

)
,

where (k, r)←$RK ×RE and r∗←$ E .Fake(pk, 1, r, pk) for a fresh public key
pk := E .OKGen(ik; k). By the same arguments as the above sub-case, we have
that (DH, DF) can be seen as a valid instance pair w.r.t. m = 1 and (pk, pk)
for the key-deniable game against E .

− (b, b∗) = (0, 0), the outside view of (DH, DF) is:(
k, r, ct0 := E .Enc(pk, 1; r)

)
,
(
k, r, ct1 := E .Enc(pk, 1; r)

)
,

where (k, r)←$RK×RE and pk := E .OKGen(ik; k). It is easy to see that now
DH and DF share the very same distribution.

Taken together, we conclude that Game 0 and 1 are computationally indistin-
guishable if E is both key-deniable and key-simulatable, so the claim holds.

3.4 Plan-Ahead DDPKE

To allow effective constructions, the literature of MDPKE [2, 10, 33] has always
served under plan-ahead setting. In context of DDPKE, it requires the sender
to determine the fake materials at the time of encryption as follows:
- the fake message m∗ from the supporting message spaceM of the system;
- the fake key pk∗ from the current available key set under the same ik asso-
ciated with the real key pk, i.e., the bulletin board certificated by the same
PKI associated with pk, which shall be denoted by Pik for simplicity.

BothM and Pik are taken as implicit inputs of sender-related algorithms Enc
and Fake under such setting. Accordingly, the fake randomness r∗ can only be
generated for these plan-ahead elements. Although limited, such setting is suffi-
cient in many cases if the sender just wants to mask the real plaintext/receiver
with some known messages/identities, e.g., transaction dates or voter lists (see
more detailed justifications at App. A).
Under this mode, we follow the routine of [10, 33] to extend the encryption

algorithm Enc w.r.t. standard DDPKE by taking as auxiliary input a fake pair
(pk∗,m∗):

• Enc(pk,m, pk∗,m∗; r): On inputting a public key pk and message m, a fake
public key pk∗ and message m∗, use randomness r←$RE to generate a
ciphertext ct.

In turn, for standard DDPKE, the fake algorithm Fake should also return an
auxiliary pair (pk∗∗,m∗∗) in addition to the original fake randomness r∗. On
the other hand, regarding weak DDPKE, only algorithm DEnc takes as auxiliary
input a fake pair (pk∗,m∗), while algorithm Enc keeps unchanged. Thus, the fake
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algorithm Fake (associated with Enc) also maintains the inteface quo. Finally,
we make slight changes for the related security notions as follows:

Correctness asks that for all security parameter λ ∈ N, initial key ik←$Gen(1λ),
real key pair (pk, sk)←$KGen(ik), real message m ∈ M, fake key and message
(pk∗,m∗) ∈ {0, 1}∗ × {0, 1}∗, and encryption randomness r←$RE, it holds that

P
[
Dec

(
sk,Enc(pk,m, pk∗,m∗; r)

)
= m

]
= 1− negl(λ),

where the encryption algorithm switches to DEnc with randomness space RDE

for weak mode.

CPA/CCA, KROB, and XROB additionally ask the adversary to submit the
auxiliary encryption material (pk∗,m∗), while FROB remains unchanged. To be
less repetitive, below we only give the definitions of IK-CCA and XROB w.r.t.
plan-ahead DDPKE and refer to App. B for other adaptive ones.

Definition 11 (IK-CCA and XROB of Plan-Ahead DDPKE). A plan-
ahead DDPKE is IK-CCA if for all PPT adversary A := (A1,A2), the abso-
lute difference of probability of returning 1 between experiment ExppIK-0

A and
ExppIK-1

A is negligible, and is XROB if for all PPT adversary A, the probability
of returning 1 for experiment ExppXROB

A is negligible.

Experiment: ExppIK-b
A (1λ)

ik←$Gen(1λ).
(pk0, sk0)←$KGen(ik), (pk1, sk1)←$KGen(ik).
Pik := {pk0, pk1}.
(m, pk∗,m∗, st)←$ADsk0

(·),Dsk1
(·)

1 (pk0, pk1).
ct := Enc(pkb,m, pk

∗,m∗).
b′←$ADsk0

(¬ct),Dsk1
(¬ct)

2 (ct, st).
Return b′.

Experiment: ExppXROB
A (1λ)

ik←$Gen(1λ).
(m0, pk0,m

∗
0, pk

∗
0, r0, sk1)←$A(ik).

ct0 := Enc(pk0,m0, pk
∗
0,m

∗
0; r0).

m1 := Dec(sk1, ct0).
Return (pk0 6= pk1) ∧ (m0 6=⊥)

∧(m1 6=⊥).

Note that in the left codes, pk∗ is not included in Pik, this is because pk∗ may
be maliciously generated by A1 and so invalid under ik.

Plan-ahead dual-deniability invokes Enc with extra input (pk∗,m∗) for b = 1,
and random pair (pk∗∗,m∗∗) over Pik ×M for b = 0; while weak notion only
shifts the case of b = 1 by invoking DEnc with extra pair (pk∗,m∗).

Definition 12 (Plan-Ahead (Weak) Dual-Deniability). A plan-ahead DDPKE
satisfies dual-deniability (resp., weak dual-deniability) if for all PPT adversary
A = (A1,A2), the absolute difference of probability of returning 1 between exper-
iment ExppDD-1

A and ExppDD-0
A (resp., ExppwDD-1

A and ExppwDD-1
A ) is negligible.
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Experiment: ExppDD-b
A (1λ)

ik←$Gen(1λ).
(pk, sk), (pk∗, sk∗)←$KGen(ik).
Pik := {pk, pk∗}.
(m,m∗, st)←$A1(pk, pk

∗).
pk∗∗←$Pik,m

∗∗←$M, r←$RE.
R := (pk∗∗,m∗∗, r).
R∗←$Fake(pk,m, r, pk∗,m∗).
D0 := (R,Enc(pk∗,m∗, pk∗∗,m∗∗; r)).
D1 := (R∗,Enc(pk,m, pk∗,m∗; r)).
b′←$A2(Db, st).
Return b′.

Experiment: ExppwDD-b
A (1λ)

ik←$Gen(1λ).
(pk, sk), (pk∗, sk∗)←$KGen(ik).
Pik := {pk, pk∗}.
(m,m∗, st)←$A1(pk, pk

∗).
r←$RE, r

′←$RDE.
r∗←$Fake(pk,m, r′, pk∗,m∗).
D0 := (r,Enc(pk∗,m∗; r)).
D1 := (r∗,DEnc(pk,m, pk∗,m∗; r′)).
b′←$A2(Db, st).
Return b′.

Finally, for plan-ahead setting, it is trivial to verify that Prop. 2-4 still hold,
while Prop. 1 is no longer satisfied due to the relaxed requirement of deniability.

4 Generic Construction of Plan-Ahead DDPKE

In this section, we move to the construction of DDPKE, where we provide a
generic approach under plan-ahead setting by leveraging ciphertext-simulatable
PKE. We begin with an abstract overview of the main techniques, then give the
formal description of our scheme as well as its security analysis.

4.1 Roadmap of The Scheme

The abstract idea of our design is to hide the encryption c of the true message m
under pk randomly within n = poly(λ) sub-ciphertexts {ci}i∈[n], some of which
are obliviously sampled and others are masking encryptions of random mi under
random pki. Then, ciphertext-simulatability enables the sender to explain c as
an oblivious ciphertext, and safely open another plan-ahead fake encryption to
fool the coercer.
With this blueprint in mind, the goal of decryption is essentially to identify

the target c from {ci} using sk. This is achieved by the following two steps:

- To separate c from oblivious ci, we make c encrypt m plus a random label
u, and further include the OWF tag σ := H(u) in the overall ciphertext. In
this way, one-wayness of H ensures that any u′ decrypted from an oblivi-
ous cipher would be invalid, i.e., not match with σ. Accordingly, the other
masking encryptions shall also deliver both mi and u for fake but consistent
opening with σ later.

- To locate c from masking ci, we place c at a random index t ∈ [n − 1]
and all the masking ciphertexts after the index t. Further, all the oblivious
elements are arranged before the index t. Then, the receiver can decode {ci}
in sequence and take as decryption result the very first valid message, which
is exactly the one decrypted from ct by the above approach.
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In a sum, the encryption procedure features under t←$ [n−1] as follows (Fig. 3):
ci is sampled from OEnc(ik; ri) for i < t; ct := Enc(pk,m||u; rt); ct+1 encrypts
the plan-ahead fake message m∗ (and u) with the plan-ahead fake key pk∗; ci :=
Enc(pki,mi||u; ri) using masking materials (pki,mi)←$Pik ×M for i > t+ 1.
Finally, upon coercion, the sender just inversely samples an oblivious random-

ness r∗t from IEnc(pk,m, rt), and reveals r∗t as well as t∗ = t+1, the rest random-
ness (u, {ri}i 6=t, {pki,mi}i>t∗+1), and the fake plan-ahead input (pk∗∗,m∗∗) :=
(pkt∗+1,mt∗+1). Since r∗t is indistinguishable from rt by ciphertext-simulatability
of the underlying PKE, such fake opening of ({ci}, σ) concerning (pk,m) dis-
tributes almost the same as an honest one concerning (pk∗,m∗), except for the
seed t∗ over [2, n] and t over [n− 1], whose distance is clearly bounded by O( 1n ).

4.2 Details of The Scheme

Let n = poly(λ),H be a secure OWF over {0, 1}h(λ), E be a ciphertext-simulatable
PKE with message space {0, 1}`(λ)+h(λ), encryption (resp., oblivious ciphertext
sampling) randomness space RE (resp., RO). Our DDPKE scheme DE for mes-
sage spaceM := {0, 1}`(λ) under plan-ahead setting proceeds as follows:

• Gen(1λ): Return ik←$ E .Gen(1λ).
• KGen(ik): Return (pk, sk)←$ E .KGen(ik).
• Enc(pk,m, pk∗,m∗;R): Take as input the designated pair (pk,m) and the

auxiliary fake pair (pk∗,m∗), conduct the following:
1. First sample the internal randomness R as follows:

¬ Sample u←$ {0, 1}h, t←$ [n− 1].
 ∀i ∈ [t+ 2, n], sample pki←$Pik and mi←$M.
® ∀i ∈ [n], sample the other encryption randomness as follows:
− If i < t, sample ri←$RO.
− Else, sample ri←$RE.

¯ Set R :=
(
u, t, {pki,mi}i∈[t+2,n], {ri}i∈[n]

)
.

2. ∀i ∈ [n], produce the sub-ciphertext ci as follows.
¬ For i < t, generate an oblivious encryption ci := E .OEnc(ik; ri).
 For i = t, generate a true encryption ci := E .Enc(pk,m||u; ri).
® For i = t+1, generate a fake encryption ci := E .Enc(pk∗,m∗||u; ri).
¯ For i > t+1, generate a masking encryption ci := E .Enc(pki,mi||u; ri).

3. Set the OWF tag σ := H(u), and return ct :=
(
{ci}i∈[n], σ

)
.

• Dec(sk, ct): Initialize succ := 0, and perform the following to iteratively de-
code ci for i ∈ [n]:
1. Decrypt m′||u′ := E .Dec(sk, ci).
2. If H(u′) = σ, set succ := 1, stop and return m′.
3. Move to i = i+ 1.
After the iteration, if succ = 0, return ⊥.
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• Fake(pk,m,R, pk∗,m∗): Upon input the real pair (pk,m), randomness R,
and the fake pair (pk∗,m∗), do the following:
1. Set u∗ := u, t∗ := t+ 1, and (pk∗∗,m∗∗) := (pkt∗+1,mt∗+1).
2. ∀i ∈ [n], perform the following steps.

¬ If i = t, sample r∗i ←$ E .IEnc(pk,m||u, ri).
 Else, set r∗i := ri. Further if i > t∗ + 1, set (pk∗i ,m∗i ) := (pki,mi).
Set R∗ :=

(
u∗, t∗, {pk∗i ,m∗i }i∈[t∗+2,n], {r∗i }i∈[n]

)
.

3. Return (pk∗∗,m∗∗,R∗).

Theorem 1. Suppose that E is correct and H is one-way, then DE is correct
under plan-ahead setting.

Proof. We shall show that it is always the sub-ciphertext ct that triggers the
“stop” condition within the iteration of Dec, and so the true message m′ = m is
returned. Below we consider two decryption cases w.r.t. oblivious or normal ci.
1. For i < t (event E1), we shall demonstrate the following fact.

Claim 2. P[ H(u′) = σ| E1 ] = AdvOWF
H .

Proof. For event E1, ci is obliviously sampled from E .OEnc(ik; ri) using ri←$RO,
and so the distribution for such ci is independent of that for σ, which itself is a
uniform evaluation onH over {0, 1}h. Hence, ifH(u′) = σ, we can obtain a trivial
algorithm breaking the one-wayness of H. Namely, given a challenge σ of H from
the challenger, honestly sample ik←$ E .Gen(1λ), (pk, sk)←$ E .KGen(ik), r←$RO,
then generate a helper ciphertext c := E .OEnc(ik; r) and decrypt c using sk to
obtain m′||u′, finally output u′ as a preimage of σ.

2. For i ≥ t, note that ct is a true encryption ofm under pk. Then, by correctness
of E , we have m′ is always equal to m when succ encounters to be t. Hence, ct
will first trigger the “stop” condition within [t, n].

From the above analysis, we conclude that, if i < t, no ci triggers the “stop”
condition; otherwise, ct first triggers. Thus, the iteration always stops at i = t
and so returns the correct m′ = m.

Remark 3. One may observe from Thm. 1 that the use of OWF tag σ implicitly
provides E with some sense of robustness. Actually, we can directly apply a
robust and ciphertext-simulatable PKE to build DDPKE, which can be seen as
a more general version of DE . Yet, we keep the current scheme here as it is more
succinct and easy to follow, and provide a variant of DE at App. C.

4.3 Security Analysis

Below we prove the security of DE under plan-ahead setting.

Theorem 2. Suppose that E is CPA-secure, then DE is CPA-secure under plan-
ahead setting.
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Proof. We prove IK-CPA of DE under plan-ahead setting, proof of IM-CPA is
similar. Suppose that a CPA adversary A against DE succeeds in distinguishing
ExppIK-b

A with non-negligible advantage ε, then we can build a PPT algorithm
B that breaks IK-CPA of E also with advantage ε.
Let ik←$ E .Gen(1λ), (pk0, sk0), (pk1, sk1)←$ E .KGen(ik), given (pk0, pk1), B for-

wards them to A and interacts with A as follows:
• Challenge. A returns (m, pk∗,m∗) to B, with which B samples u←$ {0, 1}h

and submits m||u. Then the challenger samples b←$ {0, 1}, r←$RE, and
outputs the challenge ciphertext c := E .Enc(pkb,m||u; r). Finally, B per-
forms as DE .Enc to produce a trick ciphertext for A:
1. Sample t←$ [n− 1], ri←$RO for i ∈ [t− 1], and ri←$RE for i ∈ [t, n].
2. ∀i ∈ [n], generate the sub-ciphertext ci as follows:

¬ If i < t, produce ci := E .OEnc(ik; ri).
 Else if i = t, set ci := c.
® Else if i = t+ 1, produce ci := E .Enc(pk∗,m∗||u; ri).
¯ Else, set ci := E .Enc(pki,mi||u; ri) with (pki,mi)←$Pik×M, where
Pik := {pk0, pk1}.

3. Set σ := H(u) and return ct := ({c1}i∈[n], σ) to A.
• Guess. A outputs a guess bit b′ ∈ {0, 1}, B also outputs b′ as the guess of b.
By the above construction, B provides a perfect simulation of the plan-ahead

IK-CPA game. In particular, if the challenger picks b = 0 (resp., b = 1), A is
exactly in ExppIK-0

A (resp., ExppIK-1
A ). Thus, the fact that A wins with non-trivial

probability ε implies that B’s advantage of breaking IK-CPA of E is also ε.

Theorem 3. Suppose that E is ciphertext-simulatable, then DE is
(

1
n−1+negl(λ)

)
-

dual-deniable under plan-ahead setting.

Proof. The intuition is that the honest and fake opening of a ciphertext for DE
only differs in the distributions of (t, rt) and (t∗, r∗t ). The distance ∆(t, t∗) = 1

n−1
since t (resp., t∗) is uniformly random over [n− 1] (resp., [2, n]). In addition, r∗t
is invert-sampled from E .IEnc using rt, and so computationally indistinguishable
from rt by ciphertext-simulatability of E . Below we expound on these reductions
via some hybrid games of ExppDD-b

A .

Game 0 . This is the honest opening case ExppDD-0
A w.r.t. the encryption of m∗

under pk∗, A2 is actually given

DG0
=
(
pk∗∗,m∗∗,R, ct0 := Enc(pk∗,m∗, pk∗∗,m∗∗;R), st

)
,

where ik←$Gen(1λ), (pk, sk), (pk∗, sk∗)←$KGen(ik), (m,m∗, st)←$A1(pk, pk
∗).

Besides, the auxiliary pair (pk∗∗,m∗∗) and randomnessR are sampled as follows:

1. Sample pk∗∗←$Pik where Pik := {pk, pk∗}, and m∗∗←$M.
2. Sample u←$ {0, 1}h, t←$ [n− 1].
3. ∀i ∈ [t+ 2, n], sample pki←$Pik and mi←$M.
4. ∀i ∈ [n], if i < t, sample ri←$RO; otherwise, sample ri←$RE.
5. Set R :=

(
u, t, {pki,mi}i∈[t+2,n], {ri}i∈[n]

)
.
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Game 1 . This game changes the sampling way of t, the view from A2 becomes

DG1
=
(
pk∗∗,m∗∗,R

′
, ct1 := Enc(pk∗,m∗, pk∗∗,m∗∗;R

′
), st
)
,

where the randomness R
′
is sampled as follows:

1. Sample pk∗∗←$Pik where Pik := {pk, pk∗}, and m∗∗←$M.
2. Sample u←$ {0, 1}h, t←$ [n− 1], set t′ = t+ 1.
3. ∀i ∈ [t′ + 2, n], sample pki←$Pik and mi←$M.
4. ∀i ∈ [n], if i < t′, sample ri←$RO; otherwise, sample ri←$RE.
5. Set R′ :=

(
u, t′, {pki,mi}i∈[t′+2,n], {ri}i∈[n]

)
.

Note that DG1
differs from DG0

only in the distribution of t′. Recall that t is
uniform random over [n − 1], and so t′ = t + 1 is uniform random over [2, n].
Hence, it holds that ∆(t, t′) = 1

n−1 , and further
∣∣P[b′G1

= 1]−P[b′G0
= 1]

∣∣ ≤ 1
n−1 .

Game 2 . This is the fake opening case ExppDD-1
A w.r.t. the encryption of m

under pk, the view of A2 changes into

DG2 =
(
pk∗∗,m∗∗,R∗, ct2 := Enc(pk,m, pk∗,m∗;R), st

)
,

where the real randomness R =
(
u, t, {pki,mi}i∈[t+2,n], {ri}i∈[n]

)
is sampled in

the same way as that in Game 0, and the fake auxiliary pair (pk∗∗,m∗∗) and
randomness R∗ are sampled from Fake(pk,m,R, pk∗,m∗) as follows:
1. Set (pk∗∗,m∗∗) := (pkt+2,mt+2).
2. Set u∗ := u and t∗ := t+ 1.
3. ∀i ∈ [n] \ {t}, set r∗i := ri. Further if i > t∗ + 1, set (pk∗i ,m∗i ) := (pki,mi).
4. Sample r∗t ←$ E .IEnc(pk,m||u, rt).
5. Set R∗ :=

(
u∗, t∗, {pk∗i ,m∗i }i∈[t∗+2,n], {r∗i }i∈[n]

)
.

By ciphertext-simulatability of E , the sub-ciphertext c2,t := E .Enc(pk,m; rt)
of ct2 can be explained as E .Enc(ik; r∗t ). Thus, the overall ct2 can be explained
as Enc(pk∗,m∗, pk∗∗,m∗∗;R∗). In particular, we shall show that DG2 and DG1

are computationally indistinguishable by the following observations:
− (pk∗∗,m∗∗) in both Game 1 and 2 is uniformly random over Pik ×M.
− Both u and u∗ are uniformly random over {0, 1}h.
− Both t′ and t∗ are uniformly random over [2, n] since t←$ [n− 1].
− For i ∈ [t∗ + 2, n] (resp., [t′ + 2, n]), (pk∗i ,m∗i ) (resp., (pki,mi)) is uniformly

random over Pik ×M.
− For i ∈ [t− 1], both r∗i and ri are uniformly random over RO.
− For i ∈ [t+ 1, n], both r∗i and ri are uniformly random over RE.
− For i = t, rt←$RO, c1,t := E .OEnc(ik; rt) in DG1 ; while rt←$RE, c2,t :=
E .Enc(pk,m; rt), r∗t := E .IEnc(pk,m, rt) inDG2 . Then by ciphertext-simulatability
of E , we have (rt, c1,t) and (r∗t , c2,t) are computationally indistinguishable
from the view of A2, even if it can learn both pk and m.
With these facts, we have that all the elements of DG2

are indistinguishable
from those of DG1

. Therefore we have
∣∣P[b′G1

= 1]− P[b′G0
= 1]

∣∣ ≤ AdvCS
E = negl(λ).
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Further, by combining all the above analysis, we arrive at the desired result:

∣∣P[b′ = 1 | ExppDD-1
A ]− P[b′ = 1 | ExppDD-0

A ]
∣∣ ≤ 1

n− 1
+ negl(λ).

5 Achieving Negligible Detection Probability

In this section, we forward to build DDPKE with negligible detection advantage,
where we present a more efficient construction under the weak model and show
an existing iO-based scheme is inherently dual-deniable.

5.1 New Weak-mode Construction

Weak-mode DDPKE contains two encryption algorithms Enc and DEnc (Def.
10), and a sender can first run DEnc and later claim she has invoked Enc. We
shall simplify the framework DE in §.4 by use of this flexible feature.
Recall that DE hides m at a random t ∈ [n − 1] and reveals t∗ = t + 1

as the fake coin used for Enc. Thus, the detection advantage depends heavily
on the difference between t and t∗), which is scaled by the length n of the
overall ciphertext. Now, by also switching the encryption algorithm, we can
explain the index t used in DEnc as t∗ used in Enc, without the requirement of
indistinguishability between the two randomness. Then n can be minimized to
be a constant 2, i.e., m is always hidden at t = 1 and m∗ is encrypted at t∗ = 2.
Accordingly, DEnc plays the role of the usual encryption by conducting:

c1←$ E .Enc(pk,m||u), c2←$ E .Enc(pk∗,m∗||u);
while Enc serves as fake opening by “flipping” c1 as an obliviously sampled one:

c1←$ E .OEnc(ik), c2←$ E .Enc(pk,m||u).
In this way, the difference between DEnc and Enc only depends on the distance
between a real encryption and an obliviously sampled one, which becomes neg-
ligible by ciphertext-simulatability of the underlying PKE.
Based on the above insights, we present the weakly dual-deniable scheme wDE

under plan-ahead setting, where we adopt the notations in §.4.2.

• Gen(1λ): Return ik←$ E .Gen(1λ).
• KGen(ik): Return (pk, sk)←$ E .KGen(1λ).
• Enc(pk,m;R): On input the public key pk and message m, run as follows:

1. Sample R := (u, r1, r2)←$ {0, 1}h ×RO ×RE.
2. Generate an oblivious encryption c1 := E .OEnc(ik; r1).
3. Generate a true encryption c2 := E .Enc(pk,m||u; r2).
4. Set σ := H(u) and return ct := (c1, c2, σ).

• DEnc(pk,m, pk∗,m∗;R): On input the designated pair (pk,m) and the aux-
iliary pair (pk∗,m∗), run as follows:
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1. Sample R := (u, r1, r2)←$ {0, 1}h ×RE ×RE.
2. Generate a true encryption c1 := E .Enc(pk,m||u; r1).
3. Generate a fake encryption c2 := E .Enc(pk∗,m∗||u; r2).
4. Set σ := H(u) and return ct := (c1, c2, σ).

• Dec(sk, ct): Initialize succ := 0 and do the following for i ∈ [2]:

1. Decrypt m′||u′ := E .Dec(sk, ci).
2. If H(u′) = σ, set succ := 1, stop and return m′.
3. Move to i = i+ 1.

After the iteration, if succ = 0, return ⊥.
• Fake(pk,m,R, pk∗,m∗): Upon input the real pair (pk,m), randomness R,

and the fake pair (pk∗,m∗), perform as follows:
1. Generate r∗1 ←$ E .IEnc(pk,m||u, r1) and set (u∗, r∗2) = (u, r2).
2. Return R∗ := (u∗, r∗1 , r

∗
2).

Theorem 4. Suppose that E is correct and H is one-way, then wDE is correct
under plan-ahead setting.

Proof. First prove correctness of DEnc. Since c1 is the true encryption of m||u
under pk, by correctness of E we have the output of Dec(sk, c1) is exactly m||u,
which satisfies H(u) = σ. Thus, Dec will return the correct m at i = 1.
To prove correctness of Enc, note that now c1 is obliviously sampled from
E .OEnc, then by Claim 2 and the one-wayness of H, we have H(u′) = σ with
only negligible probability. Thus the decryption will go to i = 2 where c2 is the
true encryption of m||u under pk, then by correctness of E we have that now
H(u′) = σ holds and so the correct m′ = m is returned.

Theorem 5. Suppose that E is CPA-secure, then wDE is CPA secure w.r.t. both
encryption algorithms under plan-ahead setting.

Proof. We prove IK-CPA of wDE under plan-ahead setting, proof of IM-CPA
is similar. First prove the case of wDET := 〈Gen,KGen,Enc,Dec〉. Given a CPA
adversary A against wDET with non-negligible advantage ε in distinguishing
ExppIK-b

A , we build a PPT algorithm B breaking IK-CPA of E also with advan-
tage ε. Let ik←$ E .Gen(1λ), (pk0, sk0), (pk1, sk1)←$ E .KGen(ik), given (pk0, pk1),
B forwards them to A and interacts with A as follows:

• Challenge. A returns m to B, with which B samples u←$ {0, 1}h and
submitsm||u. Then the challenger samples b←$ {0, 1}, r←$RE, and outputs
the challenge ciphertext c := E .Enc(pkb,m||u; r). Finally, B performs as
wDE .Enc to produce a trick ciphertext for A:
1. Sample r1←$RO, generate an oblivious encryption c1 := E .OEnc(ik; r1).
2. Set σ = H(u) and return ct := (c1, c, σ) to A.

• Guess. A outputs a guess bit b′ ∈ {0, 1}, B also outputs b′ as the guess of b.
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By the above construction, B provides a perfect simulation of the IK-CPA
game under plan-ahead setting. Moreover, if the challenger takes b = 0, A is
exactly in ExppIK-0

A ; otherwise, it is in ExppIK-1
A . Thus, the fact that A wins

with non-trivial probability ε implies that B’s advantage also ε.
The proof of IK-CPA under wDEF := 〈Gen,KGen,DEnc,Dec〉 takes the same

techniques, except that A1 submits m as well as an auxiliary pair (pk∗,m∗).
Also, B performs as wDE .DEnc to produce a trick ciphertext for A as follows:

1. Sample r2←$RE, generate a fake encryption c2 := E .Enc(pk∗,m∗||u; r2).
2. Set σ = H(u) and return ct := (c, c2, σ).

In this way, it still holds that if the challenger takes b = 0, A is in ExppIK-0
A ;

otherwise, it is in ExppIK-1
A , which completes the reduction.

Theorem 6. Suppose that E is ciphertext-simulatable, then wDE is weakly dual-
deniable under plan-ahead setting.

Proof. ConsiderA2’s view in gamesExppwDD-1
A andExppwDD-0

A with ik←$Gen(1λ),
(pk, sk), (pk∗, sk∗)←$KGen(ik), (m,m∗, st)←$A1(pk, pk

∗).
− For the honest case, it is D0 := (R, ct0 := Enc(pk∗,m∗;R), st), where R :=

(u, r1, r2)←$ {0, 1}h ×RO ×RE.
− For the fake case, it is D1 := (R∗, ct1 := DEnc(pk,m, pk∗,m∗;R′), st), where
the involved randomness R′ and R∗ are sampled as follows:
1. Sample R′ = (u, r1, r2)←$ {0, 1}h ×RE ×RE.
2. Sample r∗1 ←$ E .IEnc(pk,m||u, r1), set R∗ := (u, r∗1 , r2).
Parse ct0 = (c0,1, c0,2, σ0) and ct1 = (c1,1, c1,2, σ1), we can easily obtain the

following observations. First, both c0,2 and c1,2 are true encryptions of m∗||u
under pk∗ using randomness r2. Besides, note c0,1 = E .OEnc(ik; r1) and c1,1 =
E .Enc(pk,m; r1), then by ciphertext-simulatability of E , (r1, c0,1) and (r∗1 , c1,1)
are computationally indistinguishable even if A2 can learn (pk,m). Based on
these facts, it holds

∣∣P[b′ = 1|ExppwDD-1
A ]− P[b′ = 1|ExppwDD-0

A ]
∣∣ ≤ AdvCS

E .

5.2 Revisit of iO-based Construction

In this subsection, we show that dual-deniability is implied by another flavor of
deniability – public explanation [35] plus CPA security. Roughly speaking, public
explanation supports generating fake randomness r∗ with no need of the original
encryption materials. Having this property in hand, to prove the indistinguisha-
bility of fake opening (r∗, ct1) and honest encryption (r, ct0), it suffices to further
require the indistinguishability of the ciphertexts, which is exactly CPA security.
In particular, the iO-based scheme iDE in [35] has been proved to satisfy such
deniability and IM-CPA (IK-CPA and even CCA security trivially follow from
similar arguments), and so is inherently dual-deniable.
We begin with recalling the notion of public explanation, which is relative to

the following adapted syntax of algorithm Fake:



28 Z. An and F. Zhang.

• Fake(ct, pk∗,m∗): On input a ciphertext ct and a pair (pk∗,m∗), return fake
randomness r∗.

Despite using notations of (pk∗,m∗), public explanation only achieves indis-
tinguishability of fake and real randomness under the same key and message.

Definition 13 (Indistinguishability of Explanation). A PKE is explanation-
indistinguishable if for all PPT adversary A := (A1,A2), the absolute difference
of probability of returning 1 between ExpIoE-1

A and ExpIoE-0
A is negligible.

Experiment: ExpIoE-b
A (1λ)

ik←$Gen(1λ), (pk, sk)←$KGen(ik).
(m, st)←$A1(pk).
r←$RE, ct := Enc(pk,m; r), r∗←$Fake(ct, pk,m).
For b = 0 : D0 := (ct, r).
For b = 1 : D1 := (ct, r∗).
b′←$A2(Db, st).

Return b′.

Theorem 7. Suppose that a PKE scheme E is explanation-indistinguishable and
CPA-secure, then it is also dual-deniable.

Proof. The proof can be seen as an extension of the special case for message-
deniability discussed in [35]. We proceed through several hybrid games.

Game 0 . This is the opening encryption case ExpDD-0
A , and A2 is given DG0

=
(r, ct0), where r←$RE and ct0 := Enc(pk∗,m∗; r).

Game 1 . This game returns a fake randomness r∗←$Fake(ct0, pk
∗,m∗), now

the distribution from A2’s view is DG1
= (r∗, ct0). Since E is explanation-

indistinguishable, we have
∣∣P[b′G1

= 1]− P[b′G0
= 1]

∣∣ ≤ AdvIoE
E .

Game 2 . This game moves to encrypt under pk, the distribution from A’s view
becomesDG2

= (r∗, ct2), where ct2 := Enc(pk,m∗; r) and r∗←$Fake(ct2, pk
∗,m∗).

If A2 can distinguish between Game 1 and 2, we can build a PPT algorithm B
to break IK-CPA of E . Such reduction essentially comes from the fact that Fake
under public explanation does not need the original randomness.

Given (pk0, pk1), B forwards them to A and receives back a message m∗.
Next, B submits m∗ to the challenger, who flips a random b ∈ {0, 1} and re-
turns ct∗←$Enc(pkb,m

∗) to B. Then B samples itself r∗←$Fake(ct, pk0,m
∗),

and sends (r∗, ct∗) to A. Finally, B output b′ returned from A as the guess of b.
Note that if b = 0, A is in Game 1; otherwise, A is in Game 2. Hence, B is a
valid algorithm against IK-CPA of E , and so we have

∣∣P[b′G2
= 1]−P[b′G1

= 1]
∣∣ ≤

AdvIK-CPA
E .

Game 3 . This is the fake case ExpDD-1
A , A’s view becomes DG2 = (r∗, ct3),

where ct3 := Enc(pk,m; r) and r∗←$Fake(ct3, pk
∗,m∗). By a similar argument,

we have that any adversary being able to distinguish between Game 3 and 2,
can also break IM-CPA of E , and so

∣∣P[b′G3
= 1]− P[b′G2

= 1]
∣∣ ≤ AdvIM-CPA

E .
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Combining all the analysis, we arrive at the final result that
∣∣P[b′ = 1|ExpDD-1

A ]−
P[b′ = 1|ExpDD-0

A ]
∣∣ ≤ AdvIoE

E +AdvIK-CPA
E +AdvIM-CPA

E , so the theorem holds.

6 Achieving CCA Security

When plugged into a protocol running in integrated environment, the underlying
PKE module is always required to achieve CCA security. Thus, in this section, we
move to build public key encryption being both dual-deniable and CCA-secure.

6.1 Warm-up: Some Failed Attempts

We first consider our two constructions presented above. One may expect that
CCA security naturally follows from that of the used PKE. However, it is
wrong in that the overall ciphertext ct of both schemes consists of multiple
sub-ciphertexts {ci}i. Then A can query the decryption oracle with a special
ctA generated by replacing some ci of the challenge ct, so to obtain some dis-
tinguishable knowledge. E.g., for scheme wDE , A against IM-CPA of DEnc can
query Dsk with (c1, c

∗
2, σ) where c∗2 is obliviously sampled, and the decryption

result is just the questioned mb; also, A against IK-CPA of DEnc can query
Dsk0 with (c1, c

∗
2, σ), check if m is returned, and then learn the questioned pkb.

Similar attacks can be applied to wDE w.r.t. algorithm Enc and scheme DE .
Hence, we turn to capture CCA security by starting from dual-deniability.

First we examine the well-studied paradigms for CCA security, seeing if they
can confer deniability: the Fujisaki-Okamoto [24] or Naor-Yung [32] conversions
take auxiliary operations on the plaintext (RO-based XOR or zero-knowledge
proofs). As we currently do not know how to deny the input of a hash value or
zero-knowledge proof, any false claim on the contents of the ciphertext will cause
a mismatch with such elements. Fortunately, the IBE-based frameworks [7, 12]
only introduce an authentication code of the ciphertext without any further
check on the used message or key, thus bringing hope for denying these internal
contents. In what follows, we show how to extend the BK transform [7], so to
derive CCA-secure and dual-deniable PKE from dual-deniable IBE.

6.2 TA-related Dual-deniability for IBE

Canetti, Halevi, and Katz [12] first show how to derive IM-CCA PKE from
any IM-CPA IBE. Boneh and Katz [7] further improve the efficiency by use
of MAC and commitment instead of one-time signature. An IBE has syntax
〈KGen,KDer,Enc,Dec〉, where trusted authority (TA) runs KGen(1λ) to output
a master key pair (mpk,msk), and KDer(msk, id) to output a user secret key skid.
Recall that both the CHK and BK fashion take mpk as the public key of a

PKE. Thus, to argue key-deniability, we have to consider IBE under multi-TA
setting [34], where an additional algorithm Gen(1λ) outputs the initial key ik
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shared by all the TAs. Analogous to Def. 10, we formalize dual (message and
master key) deniability for IBE, whose fake algorithm performs as follows:
• Fake(mpk, id,m, r,mpk∗,m∗): On input a master public key mpk, identity
id, message m, randomness r of the original encryption, and a fake master
public key mpk∗ and message m∗, return fake randomness r∗.

Definition 14 (TA-related Dual-Deniability of IBE). A multi-TA IBE
satisfies TA-related dual-deniability if for all PPT adversary A := (A1,A2), the
absolute difference of probability of returning 1 between experiment ExptDD-1

A
and ExptDD-0

A is negligible.

Experiment: ExptDD-b
A (λ)

ik←$Gen(1λ),CorU := ∅.
(mpk,msk), (mpk∗,msk∗)←$KGen(ik).
(m,m∗, id, st)←$AOU

1 (mpk,mpk∗).
r←$RE, r

∗←$Fake(mpk, id,m, r,mpk∗,m∗).
For b = 0, D0 = (r,Enc(mpk∗, id,m∗; r)).
For b = 1, D1 = (r∗,Enc(mpk, id,m; r)).
b′←$AOU

2 (Db, st).
If id /∈ CorU, return b′; Else, return 0.

Oracle OU (i, id)
CorU := CorU ∪ {id}.
If i = 0, skid←$KDer(msk∗, id).
Else, skid←$KDer(msk, id).
Return skid.

Like [12], our conversion actually requires a weaker notion termed selective
TA-related dual-deniability (s-TA-DD), where A specifies id at the beginning
of the game. Such scheme can be built by applying the identity-based variant
of the generic approach in §.3, i.e., by use of an IBE being both statically TA-
anonymous [34] and ciphertext-simulatable, e.g., the multi-TA version of Gen-
try’s IBE scheme [25], whose TA-related anonymity has been proved in [34] and
ciphertext-simulatability can be achieved by use of simulatable groups [21].

6.3 Conversion of CCA Security with Dual-deniability

Now we are ready to present the enhanced BK framework, transforming any s-
TA-DD IBE into a CCA-secure DDPKE. Let I = 〈Gen,KGen,KDer,Enc,Dec,Fake〉
be a multi-TA IBE scheme with message space {0, 1}`+β and encryption random-
ness spaceRE, 〈Mac,Vry〉 be a deterministic MAC scheme, and 〈CGen,Samp,Open〉
be a weak commitment scheme. Our generic construction DECCA for message
spaceM := {0, 1}` is described as follows.

• Gen(1λ): ik←$ I.Gen(1λ), par←$CGen(1λ), return ik := (ik, par).
• KGen(ik): (mpk,msk)←$ I.KGen(ik), return (pk, sk) := (mpk,msk).
• Enc(pk,m;R): Perform the following steps:

1. Sample a commitment triple (k, com, dec)←$Samp(par) and r←$RE,
the used randomness is R := (com, dec, r).

2. Produce c := I.Enc(mpk, com,m||dec; r) under identity com.
3. Authenticate c under k to produce tag := Mac(k, c).
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4. Return ct := (com, c, tag).

• Dec(sk, ct): Perform the following steps:
1. Derive the secret key skcom←$ I.KDer(msk, com) of identity com.
2. Decrypt m||dec := I.Dec(skcom, c).
3. Open com to obatin k := Open(par, com, dec).
4. If Vry(k, c, tag) = 1, return m; otherwise, return ⊥.

• Fake(pk,m,R, pk∗,m∗): Sample a fake IBE encryption randomness r∗←$

I.Fake(mpk, com,m||dec, r,mpk∗,m∗||dec), and return R∗ := (com, dec, r∗).

Correctness of DECCA trivially follows from that of I, MAC, and commitment
scheme. Besides, we have the following theorem regarding its security.

Theorem 8. Suppose that the MAC is one-time strongly unforgeable, the com-
mitment scheme is computationally binding and hiding, and I is s-TA-DD, then
DECCA is dual-deniable and CCA-secure.

Proof. Intuitionally, dual-deniability follows from two facts: 1) R and R∗ only
differ in the IBE randomness r and r∗; 2) we can authenticate a valid ciphertext
c of I without knowing the plaintext within c to obtain a valid ciphertext ct of
DECCA. Intuition for CCA security is very similar to that of [7], the main idea is to
show decryption queries (com, c, tag) bring no advantage for A: if com 6= com∗,
we can just deliver the secret key skcom to A; otherwise, the query will always be
rejected thanks to the security of commitment and the unforgeability of MAC.
Below we elaborate the two separate reductions.

Dual-deniability. Given any PPT adversaryA attacking dual-deniability ofDECCA,
we construct a PPT algorithm B against s-TA-DD of I as follows.
B first samples par←$CGen(1λ) and (k∗, com∗, dec∗)←$Samp(par), then de-

clares id := com∗. Next, the challenger of I samples ik←$ I.Gen(1λ), (mpk,msk)
←$ I.KGen(ik), (mpk∗,msk∗)←$ I.KGen(ik) and gives (mpk,mpk∗) to B. Now B
sets pk := mpk, pk∗ := mpk∗ and forwards them as well as par to A.
At this stage, A outputs two messages (m,m∗). Then B submits the pair

(m||dec∗,m∗||dec∗) to the challenger and gets back (rb, cb), then it computes
tag∗ := Mac(k∗, cb) and sends

(
(com∗, dec∗, rb), (com∗, cb, tag∗)

)
to A. Finally,

B outputs the same guess b′ from A. In this way, B provides a perfect simulation
of ExpDD-b for A, and so it will win the s-TA-DD game with the same probability
of A in the dual-deniable game.

CCA security. We first prove IK-CCA of DECCA using techniques in [7], proof
of IM-CCA is similar. Below we use an IK-CCA adversary A to build an-
other B against s-TA-DD of I. Similarly, B first samples par←$CGen(1λ) and
(k∗, com∗, dec∗)←$ Samp(par), then declares id := com∗. Next, the challenger of
I samples ik←$ I.Gen(1λ), (mpk,msk)←$ I.KGen(ik), (mpk∗,msk∗)←$ I.KGen(ik)
and gives (mpk,mpk∗) to B. Now B sets pk0 := mpk, pk1 := mpk∗ and forwards
them as well as par to A. Then it interacts with A as follows:

• Query. A can make arbitrary query of the form
(
(com, c, tag), d ∈ {0, 1}

)
to

the decryption oracle of mskd. To simulate an answer, B asks the oracle OU
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on (d, com) to obtain skd,com. It then computes m||dec := I.Dec(skd,com, c),
followed by k := Open(par, com, dec). Further if Vry(k, c, tag) = 1, B returns
m to A; otherwise, it returns ⊥.

• Challenge. After polynomial queries, A outputs a message m. Then B sub-
mits (m||dec∗,m||dec∗) and receives in return (rb, cb). Finally, B computes
tag∗ := Mac(k∗, cb) and forwards ct∗ := (com∗, cb, tag∗) to A.

• Adaptive Query. A may continue to make decryption queries, but not on
the challenge ciphertext itself. B answers as before, except for queries of the
form (com∗, ·, ·, ·), B just returns ⊥.

• Guess. A finally outputs a guess b′, B outputs the same guess b′.

We argue that the simulation B provides forAmakes only one difference within
a real execution of A. That is, A queries (com∗, c, tag, d) and the response of the
real decryption oracle is not ⊥. Note that if such c is decrypted as some m||dec
and opening com∗ using dec does not result in k∗, the challenger could use A
to break the computationally binding property of the commitment scheme. The
remaining case is that the retrieved k∗ holds that Vry(k∗, c, tag) = 1. We term
this event Forge and proceed to show it only happens with negligible probability.
In fact, this case is very similar to that in the original proof of BK transform [7].

Claim 3. P[Forge] ≤ AdvHiding
COM +AdvOT-Unf

MAC .

Proof. Let Game 0 denote the real experiment where A interacts with the real
decryption oracles. Consider the following hybrid games.
Game 1 . The challenger uses (pkb, com

∗) to return an encryption c∗ of m||0β
instead of m||dec∗. Due to the selective semantic security of I (recall that for
PKE dual-deniability implies semantic security, it is easy to see that the impli-
cation also holds for IBE), Game 1 and 0 are computationally indistinguishable
from A’s view.
Game 2 . This game switches to generate tag∗ := Mac(k′, c∗) under another
fresh key (k′, ·, ·)←$ Samp(par) instead of k∗, and also check decryption query
(com∗, ·, ·) with k′.
Based on the computationally hiding property of the commitment scheme, we

argue that this change makes no difference toA. Consider an adversary F against
〈CGen,Samp,Open〉. Given (par, com, kb), F generates ik and {(mpki,mski)}i∈{0,1}
under I on its own. Then it runsA as the real IK-CCA game does, except that for
the challenge ciphertext, F sets com∗ := com, c∗←$ I.Enc(mpkbF , com,m||0β)
where bF ←$ {0, 1} is sampled by F itself, and tag∗ := Mac(kb, c

∗). Now, if b = 1,
A is in Game 1, otherwise A is in Game 2. So A’s advantage in distinguishing
between Game 1 and 2 is exactly F ’s advantage in breaking the hiding property
of the concerned commitment scheme.
Finally, we have that in Game 2, both com∗ and cb are independent of tag∗,

which is now an authentication code under k′, and so event Forgemeans a success-
ful attack to the one-time strong unforgeability of the underlying MAC scheme
w.r.t. k′.
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A More Discussions on Weak/Plan-Ahead DDPKE

Weak Dual-Deniability. It has been proved in [6] that weak mode is necessary
if negligible detection probability of message-deniability is desired for both sides,
i.e., both sender and receiver deniability. We shall show that such mode is also
necessary if negligible detection probability is required w.r.t. both sender-key-
deniability and receiver-message-deniability, if key-simulatability (Def. 6) is also
desired, e.g., for non-committing PKE [10, 20]. This comes from the following
observations:

- First, [6] essentially shows that a non-interactive standard DDPKE for bits
with polynomial secret key size cannot be both sender-message-deniable and
receiver-deniable.

- Second, as described in Prop. 4, we can obtain standard sender-DDPKE
(and so MDPKE) for bits from any standard key-simulatable sender-KDPKE
being also FROB, for which the secret key is unchanged. Actually, the re-
quirement of robustness can be relaxed to be weak robustness (Def. 16), a
simplified notion introduced in [1]. Besides, although not formally attested, it
is trivial to show that if the underlying scheme is receiver-message-deniable,
the transformed one is also receiver-message-deniable.

- There exist some simple and generic constructions of weakly robust PKE
from plain PKE [1, 31], for which the secret key is unchanged. Moreover,
these conversions bring no impact on the degree of sender-key-deniability,
receiver-message-deniability, and key-simulatability of the underlying PKE.

Combining the above facts, we arrive at the following proposition:

Proposition 5. Suppose a PKE is key-simulatable and sender-key-deniable with
the upper bound on the secret key size being γ, it can only be 1

ω(γ) -receiver-
deniable.

On the other hand, similar to the arguments in [33], when applying weak
DDPKE schemes, we can make the implementation default to the normal algo-
rithms, which do serve as an explicit system, and take the deniable algorithms
as the “backup” procedures. Under coercion, the user can simply assert that they
did not run those backup algorithms, though the coercer could have reason to
believe — but not any legal evidence — that the deniable algorithms were actu-
ally invoked. This can be ensured by deploying these implicit branches on some
undetectable devices, e.g., cloud-based libraries or distributed hosts.

Plan-Ahead Key-Deniability. We briefly show that plan-ahead dual/key-
deniability is already enough in some anonymous applications. One example is
when applying key deniable PKE in group encryption [29], where the sender can
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prepare an anonymous ciphertext designated to a member of some PKI group
and convince an outsider that the ciphertext really “belongs to” that group. In
deniable group encryption (a possible future work), the sender can just include
another valid member along with the real one, and open the ciphertext to that
“scapegoat”. Since all the communications within a group encryption system are
anonymous, the coercer cannot get any information about the target set of the
designated receivers, and thus the plan-ahead confession from the sender remains
convincing in the view of the “blind” coercer. Another software application is for
IP address hiding: an exposed host can encode the data packages via a plan-
ahead KDPKE, such that when faced with invasion attacks, it can decode these
packages towards a dummy destination and so protect the private routing tables.
Overall, plan-ahead dual-deniability is suitable for environments where the

sender can easily obtain some auxiliary but valid public keys, and the coercer
learns nothing of the real address book of that sender. In particular, compared
with the iO-based construction (§.5) under standard model, our plan-ahead
scheme (§.4) is much more efficient in key size and allows weaker assumptions
(DDH,RSA,LWE), giving hope for applying DD/KDPKE in real world after
some further optimizations.

B Other Security Definitions of Plan-Ahead DDPKE

Following the syntax of Def. 11, below we formalize IK-CCA security and KROB
w.r.t. plan-ahead DDPKE.

Definition 15 (IM-CCA and XROB of Plan-Ahead DDPKE). A plan-
ahead DDPKE is IM-CCA if for all PPT adversary A := (A1,A2), the abso-
lute difference of probability of returning 1 between experiment ExppIM-0

A and
ExppIM-1

A is negligible, and is KROB if for all PPT adversary A, the probability
of outputting 1 for experiment ExppKROB

A is negligible,

Experiment: ExppIM-b
A (1λ)

ik←$Gen(1λ).
(pk, sk)←$KGen(ik), Pik := {pk}.
(m0,m1, pk

∗,m∗, st)←$ADsk(·)
1 (pk).

ct←$Enc(pk,mb, pk
∗,m∗).

b′←$ADsk(¬ct)
2 (ct, st).

Return b′.

Experiment: ExppKROB
A (1λ)

ik←$Gen(1λ).(
{mi,m

∗
i , pki, pk

∗
i , ri}i∈{0,1}

)
←$A(ik).

ct0 := Enc(pk0,m0, pk
∗
0,m

∗
0; r0).

ct1 := Enc(pk1,m1, pk
∗
1,m

∗
1; r1).

Return (pk0 6= pk1) ∧ (ct0 = ct1 6=⊥).

C Another Look of the Construction in §.4

In the construction DE of DDPKE at §.4, we include in the overall ciphertext ct
an OWF tag σ, mainly to enable the receiver to identify ct from all the obliviously
sampled ci. In other words, we make these oblivious elements undecryptable
under sk. Naturally, we can also utilize robustness of PKE to achieve such task,
and indeed it suffices to require a basic property – weak robustness (WROB):
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Definition 16 (WROB). A PKE scheme satisfies weak robustness if for all
PPT adversary A, the probability of returning 1 for experiment ExpWROB

A is
negligible.

Experiment: ExpWROB
A (1λ)

ik←$Gen(1λ).
(pk0, sk0)←$KGen(ik), (pk1, sk1)←$KGen(ik).
(m, b)←$A(pk0, pk1).
ct←$Enc(pkb,m),m′ := Dec(sk1−b, ct).
Return m′ 6=⊥.
Note that both FROB and XROB imply WROB (Thm. 2 of [23]). Besides,

the OWF-based encryption manner used in [3], i.e., encrypting m plus a random
pad r as well as sending the OWF tag σ := H(u), is essentially also the transfor-
mation of WROB considered in [31]. Moreover, one can trivially verify that such
extension of the original ciphertext brings no impact on ciphertext-simulatability
of the underlying PKE. Similarly, it is easy to check that the conversion of
FROB proposed in [31] also reserves ciphertext-simulatability. While another
approach of FROB presented in [23] saves ciphertext-simulatability only if the
used commitment scheme is also simulatable, which is true for the DLP-based
commitments.
By applying the aforementioned techniques to the known ciphertext-simulatable

PKE schemes (see §.2.2), we can obtain the desired building block of DDPKE.
Below we give in Fig.4 the revised description of DE , where the first two algo-
rithms 〈Gen,KGen〉 are omitted as they are unchanged.

• Enc(pk,m, pk⇤,m⇤;R)

1. Sample R as follows:
¨ t $ [n� 1].
≠ 8i 2 [t+ 2, n], (pki,mi) $Pik ⇥M.
Æ 8i 2 [t� 1], ri $RO.
Ø 8i 2 [t, n], ri $RE.
R :=

�
t, {pki,mi}i2[t+2,n], {ri}i2[n]

�
.

2. 8i 2 [n], produce each ci as follows:
¨ ci := E .OEnc(ik; ri) for i < t.
≠ ct := E .Enc(pk,m; rt).
Æ ct+1 := E .Enc(pk⇤,m⇤; rt+1).
Ø ci := E .Enc(pki,mi; ri) for i > t+ 1.

3. Return ct := {ci}i2[n].

• Dec(dsk, dct)

Set succ := 0, and do the following for i 2 [n]:
1. m0 := E .Dec(sk, ci).
2. If m0 6=?, set succ := 1, stop and return m0.
3. Move to i = i+ 1.

If succ = 0, return ?.

• Fake(pk,m,R, pk⇤,m⇤)

1. Set (t⇤, pk⇤⇤,m⇤⇤) := (t+ 1, pkt+2,mt+2).
2. r⇤t  $ E .IEnc(pk,m, rt).
3. 8i 2 [n] \ {t}, r⇤i := ri.
4. 8i 2 [t⇤ + 2], (pk⇤i ,m⇤

i ) := (pki,mi).
Return R⇤ :=

�
t⇤, {pk⇤i ,m⇤

i }i2[t∗+2,n], {r⇤i }i2[n]

�
.

Fig. 4. Variant of scheme DE in §.4.

Claim 4. Suppose that E is correct, WROB, and ciphertext-simulatable, then
DE is correct, CPA-secure, and 1

n−1 -dual-deniable under plan-ahead setting.
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Proof. (Sketch). We begin with correctness. Based on the proof of Thm. 1, it
suffices to show that all the {ci}i∈[t−1] are undecryptable under sk. This is equiva-
lent to show that for random ik←$Gen(1λ), (pk, sk)←$KGen(ik), and r←$RO, it
holds P[Dec(sk, E .OEnc(ik; r)) 6=⊥] ≤ negl(λ). To this effect, we first argue that if
the above inequation is false, it must instead hold P[Dec(sk, E .Enc(pk′,m′; r′)) 6=⊥
] ≥ negl(λ) where (pk′, sk′)←$KGen(ik) is another fresh key pair and m′←$M,
or we can directly build a PPT algorithm B against ciphertext-simulatability of
E . In other words, by ciphertext-simulatability of E , if an obliviously sampled
element is decryptable under a random secret key, a random encryption (un-
der another public key) is also decryptable under the same secret key. However,
this deduction further contradicts weak robustness of E , which exactly disallows
the successful decryption (of an honest ciphertext) under the wrong key. Tak-
ing together all the analysis, we have reduced correctness of DE to correctness,
ciphertext-simulatability, and WROB of E .
Proofs of CPA-security and dual-deniability are almost the same as the ones

of Thm. 2 and 3, which are only based on ciphertext-simulatability of E .
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