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Abstract

We define and study a new cryptographic primitive, named One-One Constrained Pseudo-
random Functions. In this model there are two parties, Alice and Bob, that hold a common
random string K, where Alice in addition holds a predicate f : [N ] → {0, 1} and Bob in ad-
dition holds an input x ∈ [N ]. We then let Alice generate a key Kf based on f and K, and
let Bob evaluate a value Kx based on x and K. We consider a third party that sees the values
(x, f,Kf ) and the goal is to allow her to reconstruct Kx whenever f(x) = 1, while keeping Kx

pseudorandom whenever f(x) = 0. This primitive can be viewed as a relaxation of constrained
PRFs, such that there is only a single key query and a single evaluation query.

We focus on the information-theoretic setting, where the one-one cPRF has perfect correct-
ness and perfect security. Our main results are as follows.

1. A Lower Bound. We show that in the information-theoretic setting, any one-one cPRF for
punctured predicates is of exponential complexity (and thus the lower bound meets the
upper bound that is given by a trivial construction). This stands in contrast with the well
known GGM-based punctured PRF from OWF, which is in particular a one-one cPRF.
This also implies a similar lower bound for all NC1.

2. New Constructions. On the positive side, we present efficient information-theoretic con-
structions of one-one cPRFs for a few other predicate families, such as equality predicates,
inner-product predicates, and subset predicates. We also show a generic AND composition
lemma that preserves complexity.

3. An Amplification to standard cPRF. We show that all of our one-one cPRF constructions
can be amplified to a standard (single-key) cPRF via any key-homomorphic PRF that
supports linear computations. More generally, we suggest a new framework that we call
the double-key model which allows to construct constrained PRFs via key-homomorphic
PRFs.

4. Relation to CDS. We show that one-one constrained PRFs imply conditional disclosure of
secrets (CDS) protocols.

We believe that this simple model can be used to better understand constrained PRFs and
related cryptographic primitives, and that further applications of one-one constrained PRFs
and our double-key model will be found in the future, in addition to those we show in this
paper.

∗Ben-Gurion University of the Negev, naty@post.bgu.ac.il. Supported by ISF grant 152/17, by a grant from the
Cyber Security Research Center at Ben-Gurion University of the Negev, and by the Frankel center for computer
science.
†Weizmann Institute of Science, rotem.tsabary@weizmann.ac.il. Supported by the Israel Science Foundation

(Grant No. 468/14), Binational Science Foundation (Grants No. 2016726, 2014276), by the European Union Horizon
2020 Research and Innovation Program via ERC Project REACT (Grant 756482) and via Project PROMETHEUS
(Grant 780701), and by the Azrieli Fellows Program.
‡CNRS, ENS, PSL, wee@di.ens.fr. Supported in part by ERC Project aSCEND (H2020 639554).

1



1 Introduction

In this paper we define and study a new cryptographic primitive, named One-One Constrained
Pseudorandom Functions. In this model there are two parties, Alice and Bob, that hold a common
random string K. In addition, Alice holds a predicate f : [N ] → {0, 1} and Bob holds an input
x ∈ [N ]. We then let Alice generate a key Kf based on f and K, and let Bob evaluate a value Kx

based on x and K. We consider a third party that sees the values (x, f,Kf ) and the goal is to allow
her to reconstruct Kx whenever f(x) = 1, while keeping Kx pseudorandom whenever f(x) = 0.

This primitive can be viewed as a relaxation of constrained PRFs, such that there is only a
single key query and a single evaluation query. In a constrained PRF (first defined in [BW13,
KPTZ13, BGI14]), there is a master secret key msk with which it is possible to evaluate the PRF
on all inputs x, and in addition there are constrained keys skf respective to predicates f , where skf
is derived from msk, such that skf allows to evaluate the PRF only on inputs x where f(x) = 1,
but on all points where f(x) = 0 the PRF value remains pseudorandom even given skf . Through
this point of view, K is the master secret key of the PRF, Kx is the evaluation of the PRF on an
input x and Kf is a constrained key for the predicate f .

We believe that the simplified model of one-one cPRF can be used to better understand con-
strained PRFs and related cryptographic primitives, and that further applications of one-one con-
strained PRFs will be found in the future, in addition to those we show in this paper.

Our Contributions. Our main focus is on the information-theoretic setting, where we require
perfect correctness and perfect security. Our main results are as follows.

1. A Lower Bound. We show that in the information-theoretic setting, any one-one cPRF for
punctured predicates is of exponential complexity (and thus the lower bound meets the upper
bound that is given by a trivial construction). This stands in contrast with the well known
GGM-based punctured PRF from OWF, which is in particular a one-one cPRF. This also
implies a similar lower bound for all NC1.

2. New Constructions. On the positive side, we present efficient information-theoretic con-
structions of one-one cPRFs for a few other predicate families, such as equality predicates,
inner-product predicates, and subset predicates. We also show a generic AND composition
lemma that preserves complexity.

3. An Amplification to cPRF. We define a special double-key model and show that any one-one
cPRF in this model, when combined with a key-homomorphic PRF, can support multiple
evaluation queries. We then show that all of our constructions can be initialized in the
double-key model, which implies that all of our constructions can be amplified to a standard
(single-key) cPRF via any key-homomorphic PRF that supports linear computations. More
generally, this approach reduces the task of constructing constrained PRFs to the possibly
simpler task of constructing one-one constrained PRFs in the double-key model, and we
believe that this framework will have more applications in the future.

4. Relation to CDS. We show that one-one constrained PRFs imply conditional disclosure of
secrets (CDS) protocols, a cryptographic primitive that is used to construct secure protocols
such as attribute based encryption, symmetrically-private information retrieval protocols, and
secret-sharing schemes.
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5. Computational Constructions. To complete the picture, we also go over existing computa-
tional cPRFs in the literature, which are in particular computational one-one cPRFs.

2 Technical Overview

2.1 A Lower Bound

We begin with describing our lower bound theorem and its proof. Consider the family of punctured
predicates fy over some field F, such that for all x, y ∈ F it hold that fy(x) = 1 if and only if
x 6= y. We show that any perfect one-one cPRF for this predicate family must have keys Kfy of
size Ω(|F|). To show that, we first argue that for every x ∈ F it must be that Kx has at least one
bit of entropy, even given all of the values {Kx′}x′ 6=x. This is due to the correctness and security
properties respective to the predicate fx, which means that Kfx allows to reconstruct all {Kx′}x′ 6=x
while keeping Kx random. Secondly, due to the fact that Kfy allows to compute {Kx}x 6=y (by
correctness), and since each such Kx has at least one independent bit of entropy (by the previous
claim), it must be the case that Kfy has at least |F| − 1 = Ω(|F|) bits of entropy.

2.2 New Constructions

A Generic Construction. We now describe a simple one-one constrained PRF for general
functions over some field F with complexity O(F). In this construction, we choose a random bit

ky
$← {0, 1} for every possible input y, and let the common random string be a concatenation

of all of those values K = {ky}y∈F. Alice, which holds a predicate f , returns the values Ky for
all the inputs y such that f(y) = 1, and Bob, which holds an input x, simply returns Kx = kx.
Security and correctness follow immediately (in fact, this construction is also secure with multiple
key queries and evaluation queries). The size of the common random string is therefore at most
|F|, and for a specific function f , the size of Kf is |f−1(1)|.

Equality Testing. Our efficient construction for equality testing over a field F is as follows. The
common random string K consists of two random field elements k0, k1. The functions that Alice
and Bob compute over their inputs x and fy respectively, where fy(x) = 1 if and only if x = y, are
identical: Kx = k1x + k0 and Kfy = k1y + k0. This is essentially a degree-1 random polynomial
computed over two elements, therefore Kx and Kfy look independently random as long as x 6= y.
This construction can be generalized to any constant number of evaluation / key queries by using
a random polynomial of higher degree.

Subset Predicates. Subset predicates are defined with respect to a universe [N ] = {1, . . . , N},
where the input space is all subsets X ⊆ [N ] and the predicates fY are characterized by subsets
Y ⊆ [N ] such that fY (X) = 1 if and only if X ⊆ Y . Our efficient construction for subset predicates
is as follows. For every i ∈ [N ] there is a random bit ki in the common string K. We then define
KX = ⊕i∈Xki and KfY = {ki}i∈Y . It is easy to see correctness. In addition, whenever X * Y ,
there exists an ki /∈ KfY that completely randomizes KX .
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Inner-Product Predicates. Inner-product predicates for vectors of length ` over a field F are
defined such that for every x,y ∈ F` it holds that fy(x) = 1 if and only if 〈y,x〉 = 0. We now
describe our efficient construction. The common random string K consists of a random vector v
and a random field element w. We then define Kfy = wy + v and Kx = 〈v,x〉. Correctness holds
since whenever 〈y,x〉 = 0 it holds that 〈Kfy ,x〉 = Kx. Security holds since v has one degree of
freedom given Kfy ,y and therefore it completely randomizes Kx.

2.3 Amplification via Key-Homomorphic PRF

We consider one-one cPRFs that satisfy an additional property and show that such one-one cPRFs
can be boosted to standard (single-key) cPRFs via key-homomorphic PRFs. We then show that
all of our information-theoretic one-one cPRFs satisfy this property, thus receiving new cPRF
constructions.

In more detail, we require an alternative algorithm for Alice, that on input K, f produces a
double-key (Kf , K̂f ). Such double-key should have the property that K̂f looks uniformly random

even given Kf , but on the other hand, given both of the key parts (Kf , K̂f ) it should be possible
to reconstruct Kx for all x (regardless of f(x)).

Recall that in a key-homomorphic PRF, given an evaluation PRFk(x) of the PRF over some
input x and a key k, it is possible to publicly evaluate a function g over the key which results in the
value PRFg(k)(x). Our construction uses a key-homomorphic PRF to homomorphically evaluate

the function that takes a double-key (Kf , K̂f ) and outputs Kx. Security relies on the fact that

K̂f looks uniform even given Kf , which implies that multiple evaluations of the form PRFK̂f
(x)

look uniform by the security of the PRF. In the construction we define the cPRF evaluation as
rx := PRFKx(x). In the security proof we use the homomorphic evaluation procedure to convert
PRFK̂f

(x) into rx = PRFKx(x).

Lastly, we show that all of our information-theoretic constructions can be instantiated in the
double-key model, where the required homomorphic computation is linear. In more detail, in
the equality testing construction we let Ky = k0 + yk1 and K̂y = yk1, in the subset predicates

construction we define KY = {ki}i∈Y and K̂Y = {ki}i∈[N ]/Y and in the inner-product construction

we define Ky = wy + v and K̂y = w.

2.4 One-One Constrained PRFs and CDS Protocols

We study the connection between one-one constrained PRFs and CDS protocols. CDS protocols is
a cryptographic primitive, introduced by Gertner et al. [GIKM00]. In a CDS protocol, each of two
parties, Alice and Bob, holds a private input and sends one message to a referee, which knows the
inputs of the parties, and should learn a secret held by the parties if and only if the inputs of the
parties satisfy some condition (e.g., if the inputs are equal).

CDS protocols can be easily generalized into multi-party CDS protocols, and they are used to
construct attribute based encryption [GKW15, Wee14, Att14], symmetrically-private information
retrieval protocols [GIKM00], priced oblivious transfer [AIR01], and secret-sharing schemes [LV18,
BP18,ABF+19,BP19,ABNP20].
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We present a transformation from one-one constrained PRFs to CDS protocols. In particular,
we show that a one-one constrained PRF implies a CDS protocol for the index predicate. By the
reduction of [GKW15] from CDS protocols for general predicates to CDS protocols for the index
predicate, we obtain a transformation from one-one constrained PRFs to CDS protocols for general
predicates. This transformation preserve complexity, i.e., the message size of the resulting CDS
protocol is the complexity of the one-one constrained PRF.

Private Simultaneous Messages Protocols. Another similar primitive is private simultaneous
messages (PSM) protocols, presented by Feige et al. [FKN94], which is a private case of MPC
protocols. In a PSM protocol, each of the parties, Alice and Bob, holds a private input for a
two-input function, and each of them sends only one message to a referee, which is based on its
input and a common random string, such that the referee should be able to compute the function
on the inputs of Alice and Bob using the messages it gets, without learn any additional information
about the inputs of the parties. As CDS protocols, PSM protocols can be generalized into multi-
party PSM protocols, and they imply some other cryptographic protocols, such as constant round
MPC protocols [IK97], generalized oblivious transfer protocols [IK97], and zero-information Arthur-
Merlin protocols [AR16].

The best known PSM protocol for general functions f : [N ] × [N ] → {0, 1} has message size
O(
√
N) [BIKK14], so by our lower bound of Ω(N) on the complexity of one-one constrained PRFs,

we cannot get a transformation that preserve complexity from PSM protocols to one-one constrained
PRFs. There is a transformation that preserve message size from PSM protocols to CDS protocols
[GIKM00, BIKK14]; the other direction (an existence of transformation from CDS protocols to
PSM protocols) is an open problem, and although there is no evidence that shows an equivalence
or separation between CDS and PSM protocols, the best known CDS protocols [LVW17] have
better message size than the best known PSM protocols [BIKK14]. Studying the connections
between one-one constrained PRFs and CDS protocols or PSM protocols may help understanding
the connection between CDS protocols and PSM protocols and the bounds on the message size of
CDS and PSM protocols.

3 Preliminaries

Notations. For any n ∈ N we use [n] to denote the set {1, . . . , n}. For any set S we use s
$← S

to denote a uniformly random sample s from S. For any distribution X we use x ← X to denote
a value x that is sampled according to the distribution X. For any n ∈ N we use Un to denote
the uniform distribution over the strings of length n, and for any set S we use US to denote the
uniform distribution over the elements in S.

3.1 Entropy and Indistinguishability

Definition 3.1 (Shannon Entropy). For a random variable X and x ∈ sup(X), the sample entropy
of x with respect to X is HX(x) = log (1/Pr[X = x]). The Shannon entropy of X is then defined
as

H(X) = Ex←X [HX(x)] .

For random variables X,Y , the Shannon entropy of X conditioned on Y is

H(X|Y ) = H(X,Y )−H(Y ) .
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Definition 3.2 (Statistical Distance). The statistical distance between two random variables X1, X2

over a finite domain X is

∆(X1, X2) =
1

2

∑
x∈X
|Pr[X1 = x]− Pr[X2 = x]| .

We say that X1, X2 are δ-close if ∆(X1, X2) ≤ δ.
X1, X2 are 0-close if and only if Pr[X1 = x] = Pr[X2 = x] for all x ∈ X , and in that case we

say that they are identically distributed.

A function ε(·) is negligible if for every positive polynomial p(·) and all sufficiently large n’s, it
holds that ε(n) < 1/p(n). We define three notions of indistinguishability as follows.

Definition 3.3 (Indistinguishability). Let X = {Xn}n∈N, Y = {Yn}n∈N be two distribution ensem-
bles.

1. X and Y are perfectly indistinguishable if for every n ∈ N, the random variables Xn and Yn
are identically distributed.

2. X and Y are statistically indistinguishable if there exists a negligible function ε(·) such that
for every n ∈ N, Xn and Yn are ε(n)-close.

3. X and Y are computationally indistinguishable if for every non-uniform ppt distinguisher
D, there exists a negligible function ε(·) such that for every n ∈ N,

|[Pr[D(Xn) = 1]− [Pr[D(Yn) = 1]| < ε(n) .

3.2 Notions of Pseudorandom Functions

Definition 3.4 (Constrained PRFs). A constrained pseudorandom function (cPRF) for a predicate
family F and an input space X is defined by the algorithms (KeyGen,Eval,Constrain,ConstrainEval)
where:

• KeyGen(1λ) is a ppt algorithm that takes as input a security parameter λ and outputs a
master key msk.

• Eval(msk, x) is a deterministic algorithm that takes as input the master secret key msk and
an input x ∈ X , and outputs a string rx ∈ {0, 1}∗.

• Constrain(msk, f) is a ppt algorithm that takes as input the master secret key msk and a
predicate f ∈ F , and outputs a constrained key skf .

• ConstrainEval(skf , x) is a deterministic algorithm that takes as input a constrained key skf
and an input x ∈ X , and outputs a string r′x ∈ {0, 1}∗.

Correctness of Constrained Keys. The scheme is correct if for all x ∈ X and f ∈ F for
which f(x) = 1, and for all msk← KeyGen(1λ), skf ← Constrain(msk, f), it holds that

Eval(msk, x) = ConstrainEval(skf , x) .
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(Single-Key) Pseudorandomness. The security requirement is captured via a game between a
challenger C and an adversary A as follows.

• C computes msk← KeyGen(1λ).

• In an order of her choice, A makes an arbitrary number of evaluation queries, a single
challenge query and a single key query:

– Evaluation Query: A selects x ∈ X and sends it to C. In return, C computes rx ←
Eval(msk, x) and sends it to A.

– Challenge Query: A selects x∗ ∈ X and sends it to C. In return, C computes rx∗ ←
Eval(msk, x∗) and samples a bit b

$← {0, 1}. If b = 0, it sends rx∗ to A, otherwise it
sends to A a random value u← U|rx∗ |.

– Key Query: A selects f∗ ∈ F and sends it to C. In return, C computes skf∗ ←
Constrain(msk, f∗) and sends skf∗ to A.

• C sends to A a bit b′.

The advantage of A in the game is Pr[b = b′]− 1
2 where the probability is over the coins of C and A.

The adversary A is admissible if f∗(x∗) = 0 and x∗ does not appear in any of the evaluation queries.
The scheme is computationally secure if for any ppt admissible adversary A, her advantage in the
game is negl(λ).

We define key-selective pseudorandomness identically to the definition above, except that A is
forced to make the key query first.

Definition 3.5 (Key-Homomorphic PRFs). A key-homomorphic pseudorandom function (khPRF)
for an input space X , a key space K, and a function family G = {Gn : Kn → K}n∈N, is defined by
the algorithms (KeyGen,Eval,HomKeyEval) where:

• KeyGen(1λ) is a ppt algorithm that takes as input a security parameter λ and outputs a key
sk ∈ K and possibly public parameters pp.

• Eval(sk, x) is a deterministic algorithm that takes as input a key sk ∈ K and an input x ∈ X ,
and outputs rx ∈ {0, 1}∗.

• HomKeyEval(g, rx) is a ppt algorithm that takes as input a function g ∈ G and a value
rx ∈ {0, 1}∗, and outputs a value r̂x ∈ {0, 1}∗.

Correctness of Homomorphic Key Evaluation. The scheme is correct if for all x ∈ X , all
g ∈ G where g : Kn → K, and all {ski}i∈[n] ∈ K, it holds that

HomKeyEval (g,Eval(sk1, x), . . . ,Eval(skn, x)) = Eval (g(sk1, . . . , skn), x) .

Pseudorandomness. The security requirement is captured via a game between a challenger C
and an adversary A as follows.

• C computes sk← KeyGen(1λ).

• In an order of her choice, A makes an arbitrary number of evaluation queries and a single
challenge query:
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– Evaluation Query: A selects x ∈ X and sends it to C. In return, C computes rx ←
Eval(sk, x) and sends it to A.

– Challenge Query: A selects x∗ ∈ X and sends it to C. In return, C computes rx∗ ←
Eval(sk, x∗) and samples a bit b

$← {0, 1}. If b = 0, it sends rx∗ to A, otherwise it sends
to A a random value u← U|rx∗ |.

• C sends to A a bit b′.

The advantage of A in the game is Pr[b = b′] − 1
2 where the probability is over the coins of C

and A. The adversary A is admissible if x∗ does not appear in any of the evaluation queries. The
scheme is computationally secure if for any ppt admissible adversary A, her advantage in the game
is negl(λ).

4 Definition of One-One Constrained PRFs

Definition 4.1 (One-One Constrained PRFs). A One-One Constrained Pseudorandom Function
for a predicate family F and an input space X is a tuple of algorithms (Setup,A,B,Recon) with the
following syntax.

• Setup(1λ)→ K is a PPT algorithm that (possibly) takes a security parameter λ and outputs
a common random string K.

• A(K, f) → Kf is a PPT algorithm that takes a common random string K and a predicate
f ∈ F . It outputs a key Kf .

• B(K,x) → Kx is a deterministic algorithm that takes a common random string K and an
input x ∈ X . It outputs a value Kx.

• Recon(x, f,Kf ) → K ′x is a deterministic algorithm that takes an input x ∈ X , a predicate
f ∈ F , and a key Kf . It outputs a value K ′x.

Complexity. We say that the scheme is of complexity p(·, ·, ·) if for every (λ,X ,F), for every
x ∈ X and f ∈ F , for every K,Kf ,Kx where K ← setup(1λ), Kf ← A(K, f), and Kx ← B(K,x),
the size of (K,Kf ,Kx) is O(p(λ, |X | , |F|)).

Correctness. A one-one constrained PRF is correct if for all f ∈ F and x ∈ X for which
f(x) = 1, for all K ← Setup(1λ), and for all coins of A, it holds that

Recon(x, f,A(K, f)) = B(K,x) .

Security. The security requirement is captured via a game between a challenger C and an adver-
sary A as follows.

• C computes K ← Setup(1λ).

• In an order of her choice, A makes two queries:
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– Challenge Query: A selects x∗ ∈ X and sends it to C. In return, C computes Kx∗ ←
B(K,x∗) and samples a bit b

$← {0, 1}. If b = 0, it sends Kx∗ to A, otherwise it sends
to A a random value u← U|Kx∗ |.

– Key Query: A selects f∗ ∈ F and sends it to C. In return, C computes Kf∗ ← A(K, f∗)
and sends Kf∗ to A.

• A sends to C a bit b′.

The advantage of A in the game is Pr[b = b′] − 1
2 where the probability is over the coins of C

and A. The scheme is perfectly ( /statistically /computationally) secure if for any unbounded
( /unbounded /ppt) adversary A that selects x∗, f∗ for which f∗(x∗) = 0, her advantage in the
game is 0 ( /negl(λ) /negl(λ)).

We define key-selective (resp. input-selective) security identically to the definition above, except
that A is forced to make the key query (resp. challenge query) first.

Indistinguishability Based Perfect Security. In the prefect setting, we can omit the security
parameter and selective security implies full security, therefore the following definition is equivalent
to the one above:

A one-one constrained PRF is perfectly secure if for all f∗ ∈ F and x∗ ∈ X for which f∗(x∗) =
0, the following distributions are identical:

(f∗, x∗,Kf∗ ,Kx∗) ≡ (f∗, x∗,Kf∗ , u)

where K ← Setup(), Kf∗ ← A(K, f∗), Kx∗ ← B(K,x∗), u← U|Kx∗ |.

Note. This is essentially a constrained PRF secure against one constrained key and one evaluation
query. Related primitives: constrained PRFs, conditional disclosure of secrets (CDS), function
secret-sharing.

5 A Lower Bound

We now show that for inequality predicates, the upper bound that we show in Theorem 6.1 is tight,
i.e., it is not possible to do better than the trivial construction. This means we cannot hope to
achieve efficient information-theoretic constructions for NC1.

Theorem 5.1. Let F = {f6=y}y∈F be the family of punctured predicates over some field F, i.e., for
any fixed y ∈ F, f6=y : F → {0, 1} where f6=y(x) = 1 if and only if x 6= y. Then, for any field F,
any one-one constrained PRF for F with perfect correctness and perfect security is of complexity
Ω(|F|).

We now prove Theorem 5.1. Denote N = |F| and consider all of the field elements x1, . . . , xN
according to some fixed order. Consider the random variable K ← Setup() and for all i ∈ [N ]
consider the random variables Ki and K6=i defined as:

Ki ← B(K,xi), K6=i ← A(K, f6=xi) .

Claim 5.1.1. For all i ∈ [N ], it holds that H(Ki | K1, . . . ,Ki−1) ≥ 1.
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Proof. Fix an i ∈ [N ]. By the perfect security it holds that (K 6=i,Ki) ≡ (K 6=i, u) where u← U|Kx|.
Since H(u | K6=i) ≥ 1, it follows that

H(Ki | K6=i) ≥ 1 . (1)

By the perfect correctness, K6=i uniquely determines all of the values {Kj}j 6=i. That is,

H({Kj}j 6=i | K6=i) = 0 ,

i.e., (by Theorem 3.1)
H({Kj}j 6=i,K6=i) = H(K6=i) ,

and therefore
H(K6=i) ≥ H({Kj}j 6=i) .

Since {K1, . . . ,Ki−1} ⊆ {Kj}j 6=i, it follows that

H(K6=i) ≥ H(K1, . . . ,Ki−1) . (2)

Lastly, equations (1) and (2) imply that

H(Ki | K1, . . . ,Ki−1) ≥ H(Ki | K6=i) ≥ 1 .

Claim 5.1.2. For any subset I ⊆ [N ], it holds that H({Ki}i∈I) ≥ |I|.

Proof. Fix a subset I ⊆ [N ] and denote I = {i1, . . . , i|I|} such that i1 < i2 < · · · < i|I|. By
Claim 5.1.1, for all j = 1, . . . , |I| it holds that

H(Kij | Ki1 , . . . ,Kij−1) ≥ H(Kij | K1, . . . ,Kij−1) ≥ 1 ,

i.e., (by Theorem 3.1)

H(Kij ,Ki1 , . . . ,Kij−1)−H(Ki1 , . . . ,Kij−1) ≥ 1 ,

i.e.,
H(Kij ,Ki1 , . . . ,Kij−1) ≥ 1 +H(Ki1 , . . . ,Kij−1) .

Since this is true for all j = 1, . . . , |I|, it follows that

H({Ki}i∈I) = H(Ki|I| ,Ki1 , . . . ,Ki|I|−1
)

≥ 1 +H(Ki1 , . . . ,Ki|I|−1
)

≥ 1 + 1 +H(Ki1 , . . . ,Ki|I|−2
)

. . .

≥ |I| .

Consider now an arbitrary i ∈ [N ]. From Claim 5.1.2 it holds that H({Kj}j 6=i) ≥ N − 1. Since
H(K6=i) ≥ H({Kj}j 6=i) (see the proof of Claim 5.1.1), it follows that H(K6=i) ≥ N − 1. Hence, for
any i ∈ [N ] the size of K6=i is at least N − 1, which completes the proof.
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6 Information-Theoretic Constructions

In this section we consider one-one constrained PRFs with perfect correctness and security. We be-
gin in Section 6.1 with a generic construction for all predicates over a field F, which is of complexity
O(|F|). We then present more efficient constructions for specific predicate families; We begin in
Section 6.2 with a complexity-preserving composition lemma for the AND operator. That is, we
show that given a one-one cPRF for predicates families F1 and F2, there is a one-one cPRF for the
predicate family F1 ∧F2 of proportional complexity. In Section 6.3 we show a construction for the
equality predicate over a field F with complexity O(log |F|), which extends to a `-vector-equality
construction of complexity O(` · log |F|) via the generic AND composition. In Section 6.4 we show
a construction for the subset relation with complexity O(N), where N is the maximal size of sets,
which extends to t-CNFs with complexity O(

(
`
t

)
· |F|t · log |F|) as pointed out by [DKNY18,Tsa19].

In Section 6.5 we construct a one-one cPRF for inner-product predicates for vectors in F` with
complexity O(` · log |F|), which can be extended to polynomials via embedding of polynomial zero
testing as inner-product.

6.1 Generic Predicates

Theorem 6.1. Let F be the family of all predicates over some field F, i.e., any f ∈ F is of the
form f : F → {0, 1}. Then, there is a one-one constrained PRF for F with perfect correctness,
perfect security, and complexity O(|F|).

Proof. The construction is as follows.

• Setup(): For any y ∈ F sample ky
$← {0, 1}. Output K = {ky}y∈F.

• A(K, f): Parse K = {ky}y∈F and output Kf = {ky : f(y) = 1}y∈F.

• B(K,x): Parse K = {ky}y∈F and output Kx = kx.

• Recon(x, f,Kf ): Parse Kf = {ky : f(y) = 1}y∈F. If f(x) = 1 then output kx, otherwise
output ⊥.

Correctness. If f(x) = 1 then kx ∈ Kf .

Security. Consider K ← Setup(), Kf ← A(K, f), Kx ← B(K,x), u
$← {0, 1}. If f(x) = 0 then

kx /∈ Kf . Since kx is a uniformly sampled bit and H(kx|Kf ) = H(kx), it holds that

(f, x,Kf ,Kx) ≡ (f, x,Kf , u) .

6.2 AND Composition

Lemma 6.2. Let (Setup1,A1,B1,Recon1) and (Setup2,A2,B2,Recon2) be perfect one-one con-
strained PRFs for some predicate families F1 = {f1 : F → {0, 1}} and F2 = {f2 : F → {0, 1}}
respectively for some field F, with complexity bounded by some functions P 1 and P 2 respectively.
Then, there is a perfect one-one constrained PRF for the predicate family F1 ∧ F2 = {f1 ∧ f2 :
F→ {0, 1}}f1∈F1,f2∈F2 with complexity bounded by P 1 + P 2.
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Proof. For simplicity we assume that for all x it holds that
∣∣K1

x

∣∣ =
∣∣K2

x

∣∣. This can always be
enforced because it is possible to ignore some of the bits of Kx without compromising correctness
and security. The construction is as follows.

• Setup(): Compute K1 ← Setup1() and K2 ← Setup2(), output K = (K1,K2).

• A(K, f): Parse K = (K1,K2) and f = f1 ∧ f2. Compute K1
f1 ← A1(K1, f1) and K2

f2 ←
A2(K2, f2). Output Kf = (K1

f1 ,K
2
f2).

• B(K,x): Parse K = (K1,K2). Compute K1
x ← B1(K1, x) and K2

x ← B2(K2, x). Output
Kx = K1

x +K2
x.

• Recon(x, f,Kf ): Parse Kf = (K1
f1 ,K

2
f2). Compute R1

x ← Recon1(x, f1,K1
f1) and R2

x ←
Recon2(x, f2,K2

f2), output Rx = R1
x +R2

x.

Correctness. If f(x) = 1 then f1(x) = 1 ∧ f2(x) = 1, therefore by the correctness of the
underlying constructions R1

x = K1
x and R2

x = K2
x, thus Rx = Kx.

Security. Consider K ← Setup(), Kf ← A(K, f), Kx ← B(K,x), u ← U|Kx| where K =
(K1,K2), f = f1 ∧ f2, Kf = (K1

f1 ,K
2
f2) and Kx = K1

x + K2
x. If f(x) = 0 then there exists

i ∈ {1, 2} for which f i(x) = 0. By the security of the underlying constructions it holds that

(f i, x,Ki
f i ,K

i
x) ≡ (f i, x,Ki

f i , u
i) .

where Ki ← Setupi(), Ki
f i
← Ai(Ki, f i), Ki

x ← Bi(Ki, x), ui ← U|Ki
x|. Since the two instances of

the underlying constructions are independent (i.e., H(K1|K2) = H(K1) and H(K2|K1) = H(K2)),
and in particular Ki

x is independent of (K3−i
f3−i ,K

3−i
x ), it follows that

(f, x,Kf ,Kx) = (f, x, (K1
f1 ,K

2
f2),K1

x +K2
x)

≡ (f, x, (K1
f1 ,K

2
f2),K3−i

x + ui)

≡ (f, x, (K1
f1 ,K

2
f2), u)

= (f, x,Kf , u) .

6.3 Equality Testing

Theorem 6.3. Let F = {fy}y∈F be the family of point predicates over some field F, i.e., for any
fixed y ∈ F, fy : F → {0, 1} where fy(x) = 1 if and only if x = y. Then, there is a one-one
constrained PRF for F with perfect correctness, perfect security, and complexity O(log |F|).

Proof. The construction is as follows.

• Setup(): Sample k0, k1
$← F and output K = (k0, k1).

• A(K, fy): Parse K = (k0, k1) and output Kfy = k0 + yk1.

• B(K,x): Parse K = (k0, k1) and output Kx = k0 + xk1.

• Recon(x, fy,Kfy): If x = y then output Kfy , otherwise output ⊥.
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Correctness. If fy(x) = 1, i.e., x = y, then Kfy = Kx.

Security. Consider K ← Setup(), Kfy ← A(K, fy), Kx ← B(K,x), u
$← F. If fy(x) = 0, i.e.,

x 6= y, then (Kfy ,Kx) = (k0 + yk1, k0 + xk1) are two distinct points on a random linear function
defined by (k0, k1). Since for every possible value of the uniformly sampled u ∈ F there is a unique
(k′0, k

′
1) ∈ F2 such that k′0 + yk′1 = k0 + yk1 = Kfy and k′0 + xk′1 = u, it holds that (fy, x,Kfy ,Kx)

and (fy, x,Kfy , u) are identically distributed.

Extensions. The construction above can be extended to other notions as follows.

• The predicates family of equality testing of vectors over some field F, i.e., the family F =
{fy}y∈F` where for any fixed y ∈ F`, fy : F` → {0, 1} such that fy(x) = 1 if and only if
x = y. The construction is derived via the AND composition lemma (see Theorem 6.2) and
is of complexity O(` · log |F|).

• A 1-key t-queries variant, i.e., a construction where for any fy ∈ F and any X ⊆ F/y of size
|X | < t, it holds that

(fy, x,Kfy , {Kx}x∈X ) ≡ (fy, x,Kfy , {ux}x∈X )

where K ← Setup(), Kfy ← A(K, fy), Kx ← B(K,x), ux ← U|Kx|. In the construction,
sample a random polynomial p of degree t as the common random string K and compute
Kx = p(x), Kfy = p(y). The complexity is O(t · log |F|).

6.4 Subset Predicates

Theorem 6.4. Let F = {fY }Y⊆[N ] be the family of subset predicate over the set [N ], i.e., for any

fixed subset Y ⊆ [N ], fY : 2[N ] → {0, 1} and fY (X) = 1 if and only if X ⊆ Y . Then, there is a
one-one constrained PRF for F with perfect correctness, perfect security, and complexity O(N).

Proof. The construction is as follows.

• Setup(): For any i ∈ [N ] sample ki
$← {0, 1}. Output K = {ki}i∈[N ].

• A(K, fY ): Parse K = {ki}i∈[N ] and output KfY = {ki}i∈Y .

• B(K,X): Parse K = {ki}i∈[N ] and output KX =
⊕

i∈X ki.

• Recon(X, fY ,KfY ): Parse KfY = {ki}i∈Y . If X ⊆ Y then compute and output K ′X =⊕
i∈X ki, otherwise output ⊥.

Correctness. If fY (X) = 1, i.e., X ⊆ Y , then K ′X = KX .
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Security. If fY (X) = 0, i.e., X * Y , then there exists an index i∗ ∈ X such that i∗ /∈ Y , therefore

(fY , X, {ki}i∈Y , ki∗) ≡ (f, x, {ki}i∈Y , u)

and thus
(fY , X, {ki}i∈Y ,

⊕
i∈X

ki) ≡ (fY , X, {ki}i∈Y , u)

and thus
(fY , X,KfY ,KX) ≡ (fY , X,KfY , u)

where {ki}i∈[N ] = K ← Setup(), KfY ← A(K, fY ), KX ← B(K,X), u
$← {0, 1}.

Extensions. Using techniques similar to [DKNY18,Tsa19], the construction above implies a one-
one constrained PRF for the class of t-CNF predicates with inputs of length ` over some field F,
where the construction is of complexity O(

(
`
t

)
· |F|t · log |F|).

6.5 Inner-Product Predicates

Theorem 6.5. Let F = {fy}y∈F` be the family of inner-product predicates of length-` vectors over

some field F, i.e., for any fixed y ∈ F`, fy : F` → {0, 1} where fy(x) = 1 if and only if 〈y,x〉 = 0.
Then, there is a one-one constrained PRF for F with perfect correctness, perfect security, and
complexity O(` · log |F|).

Proof. The construction is as follows.

• Setup(): Sample v
$← F` and w

$← F. Output K = (v, w).

• A(K, fy): Parse K = (v, w) and output Kfy = wy + v.

• B(K,x): Parse K = (v, w) and output Kx = 〈v,x〉.

• Recon(x, fy,Kfy): Output 〈Kfy ,x〉.

Correctness. If fy(x) = 1, i.e., 〈y,x〉 = 0, then

〈Kfy ,x〉 = 〈wy + v,x〉 = w〈y,x〉︸ ︷︷ ︸
0

+ 〈v,x〉︸ ︷︷ ︸
Kx

.

Security. If fy(x) = 0, i.e., 〈y,x〉 6= 0, then

(fy,x,Kfy ,Kx) = (fy,x, wy + v, 〈v,x〉) ≡ (fy,x, wy + v, u) = (fy,x,Kfy , u)

where K ← Setup(), Kfy ← A(K, fy), Kx ← B(K,x), u
$← F.

To see that, fix some values (y,x, u). Sample a random v under the constraint that 〈v,x〉 = u,
then sample w and output (fy,x, wy + v, u).
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7 Removing the One-One Restriction via Key-Homomorphic PRF

In this section we consider one-one cPRFs that satisfy an additional property and show that such
one-one cPRFs can be boosted to standard cPRFs via key-homomorphic PRFs. We then show
that all of our information-theoretic one-one cPRFs satisfy this property, thus receiving new cPRF
constructions.

In more detail, we require an alternative algorithm for Alice, dkA(K, f), that produces a double-
key (Kf , K̂f ). Such double-key should have the property that K̂f looks uniformly random even

given Kf , but on the other hand, given both of the key parts (Kf , K̂f ) it should be possible to
compute Kx for all x (regardless of f(x)). We now formally define this additional property.

Definition 7.1. A one-one constrained pseudorandom function for a predicate family F and an
input space X is in the double-key model, if in addition to the algorithms (Setup,B,Recon) as in
Theorem 4.1, there exists algorithms dkA and dkRecon with the following syntax.

• dkA(K, f) → (Kf , K̂f ) is a PPT algorithm that takes a common random string K and a

predicate f ∈ F . It outputs a pair of keys (Kf , K̂f ).

• dkRecon(x, f,Kf , K̂f ) → K ′x is a deterministic algorithm that takes an input x, a predicate

f ∈ F , and a pair of keys (Kf , K̂f ). It outputs a value K ′x.

(Standard) Correctness. A one-one constrained PRF is correct if it satisfies standard cor-
rectness (as in Theorem 4.1) with respect to the keys Kf . That is, for all f ∈ F and x ∈ X
for which f(x) = 1, for all K ← Setup(1λ), and for all (Kf , K̂f ) ← dkA(K, f), it holds that
Recon(x, f,Kf ) = B(K,x).

Correctness of Double-Keys. A one-one constrained PRF has correct double-key if for all
f ∈ F and x ∈ X for which f(x) = 0, for all K ← Setup(1λ), and for all (Kf , K̂f ) ← dkA(K, f),

it holds that dkRecon(x, f,Kf , K̂f ) = B(K,x).

Security of Double-Keys. The scheme has perfect ( /statistical /computational) double-key
security if for any f ∈ F and any unbounded ( /unbounded /ppt) distinguisher, the following
distributions are identical ( /statistically close /computationally indistinguishable).

(f,Kf , K̂f ) ≡ (f,Kf , u)

where K ← Setup(1λ), (Kf , K̂f )← dkA(K, f), u← U|K̂f |.

Given the new definition in hand, we now state the main theorem.

Theorem 7.2. Let (KeyGen,Eval,HomKeyEval) be a key-homomorphic PRF for an input
space Xα, a key space K, and a function family G = {Gn : Kn → K}n∈N, and let
(Setup, dkA,B,Recon, dkRecon) be a one-one cPRF in the double-key model (as in Theorem 7.1)
for an input space Xβ and a predicate family F , such that:
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• The key space K is some field F and the algorithm KeyGen(1λ) outputs a random value sk
$← F.

• For all x ∈ Xβ and all K ← Setup(1λ) it holds that Kx ∈ F where Kx ← B(K,x) and F is
the same field as above.

• For all f ∈ F there exists n ∈ N such that for all K ← Setup(1λ) it holds that K̂f ∈ Fn,

where (Kf , K̂f )← dkA(K, f) and F is the same field as above.

• For all x ∈ Xβ and f ∈ F such that f(x) = 0, and all (Kf , K̂f ) ← dkA(K, f) where K ←
Setup(1λ), let dkReconx,f,Kf

: Fn → F denote the algorithm dkRecon with the hard-coded
inputs (x, f,Kf ), i.e., dkReconx,f,Kf

(·) = dkRecon(x, f,Kf , ·). Then:

– dkReconx,f,Kf
(·) can be homomorphically evaluated over keys of the key-homomorphic

scheme, i.e., dkReconx,f,Kf
(·) ∈ G.

– dkReconx,f,Kf
(·) preserves uniformity, i.e., the distributions dkReconx,f,Kf

(UFn) and UF
are identical.

Then, there exists a key-selective secure single-key constrained PRF for the predicate family F and
the input space X = Xα ∩ Xβ.

7.1 The Reduction

We proceed to the proof of Theorem 7.2. Assuming a key-homomorphic PRF and a one-one
constrained PRF as described in the theorem, the constrained PRF is defined as follows.

Construction 7.3. Define:

• CPRF.KeyGen(1λ): Compute K ← Setup(1λ) and output msk = K.

• CPRF.Eval(msk, x): Parse msk = K. Compute Kx := B(K,x) and output rx := EvalKx(x).

• CPRF.Constrain(msk, f): Parse msk = K. Compute (Kf , K̂f )← dkA(K, f) and output skf =
(f,Kf ).

• CPRF.ConstrainEval(skf , x): Parse skf = (f,Kf ). Compute K ′x := Recon(x, f,Kf ) and output
r′x := EvalK′x(x).

Correctness of Constrained Keys. Fix x ∈ X and f ∈ F for which f(x) = 1, and msk ←
CPRF.KeyGen(1λ), skf ← CPRF.Constrain(msk, f). Then msk = K and skf = (f,Kf ) where K ←
Setup(1λ) and (Kf , K̂f )← dkA(K, f). Consider CPRF.ConstrainEval(skf , x) and in particular K ′x =
Recon(x, f,Kf ), then by the standard correctness of the one-one cPRF, since f(x) = 1 it holds that
K ′x = Kx and therefore EvalK′x(x) = EvalKx(x).

Pseudorandomness. We now prove that Theorem 7.3 is a single-key key-selective secure con-
strained PRF as in Theorem 3.4. The proof goes via a sequence of hybrids.
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Hybrid H0. This is the real security game as in Theorem 3.4. Note that this is the selective-
key game, i.e., the key query for f happens before any other queries. Explicitly, C computes
K ← Setup(1λ) and then immediately answers the key query:

• Key Query: Upon receiving f ∈ F , C computes (Kf , K̂f )← dkA(K, f) and sends Kf to A.

In the rest of the game C answers queries made by A as follows.

• Evaluation Query: Upon receiving x ∈ X , C computes Kx := B(K,x) and rx := EvalKx(x).

It sends rx to A.

• Challenge Query: Upon receiving x∗ ∈ X , C computes Kx∗ := B(K,x∗) and rx∗ :=
EvalKx∗ (x

∗).

It samples a bit b
$← {0, 1}. If b = 0, it sends rx∗ to A, otherwise it sends to A a random

value u← U|rx∗ |.

Hybrid H1. In this hybrid we change the way that C evaluates Kx when it answers evaluation
queries and the challenge query. Instead of using the common random string K, it will use the
double-key (Kf , K̂f ). That is, upon receiving x ∈ X , instead of computing Kx := B(K,x) it
computes

Kx :=

{
Recon(x, f,Kf ) f(x) = 1

dkRecon(x, f,Kf , K̂f ) f(x) = 0

and then proceeds as in the previous hybrid. Due to the prefect standard correctness and correctness
of double-keys, the distributions that C outputs in Hybrids H0 and H1 are identical.

Hybrid H2. Note that C does not use K anymore except of when it first generates (Kf , K̂f ). In

this hybrid we change K̂f to uniform. That is, after computing (Kf , K̂f )← dkA(K, f), C samples

a random value u ← U|K̂f | and overrides the value of K̂f such that K̂f := u. By the perfect

( /statistical /computational) security of double-keys, the distributions that C outputs in hybrids
H1 and H2 are identical ( /statistically close /computationally indistinguishable).

Hybrid H3. In this hybrid we change the way that C evaluates rx when it answers evalua-
tion queries and the challenge query, whenever f(x) = 0. Recall that in the previous hybrid it
computes rx := EvalKx(x) where Kx := dkRecon(x, f,Kf , K̂f ), and recall that by assumption,
dkReconx,f,Kf

(·) = dkRecon(x, f,Kf , ·) can be homomorphically evaluated over the PRF key-space

using HomKeyEval. Moreover, by our assumption it holds that K̂f ∈ Fn for some n ∈ N. Therefore,

rx = EvalKx(x)

= EvaldkRecon(x,f,Kf ,K̂f )
(x)

= EvaldkReconx,f,Kf
(K̂f )

(x)

= HomKeyEval
(
dkReconx,f,Kf

, EvalK̂1
f
(x), . . . ,EvalK̂n

f
(x)
)

where K̂f = (K̂1
f , . . . , K̂

n
f ). In this hybrid, C first computes six := EvalK̂i

f
(x) for all i ∈ [n], and then

rx := HomKeyEval
(
dkReconx,f,Kf

, s1x, . . . , s
n
x

)
.

17



By the perfect correctness of homomorphic key evaluation, the distributions that C outputs in
hybrids H2 and H3 are identical.

Hybrid H4. In this hybrid we change the way that C evaluates s1x, . . . , s
n
x whenever f(x) = 0.

Note that in HybridH3 the value K̂f , which is uniformly random in Fn, is only used when computing
six := EvalK̂i

f
(x) for all i ∈ [n]. Thus, we can replace the values s1x, . . . , s

n
x with uniformly random

strings. That is, whenever a query is made for an x such that f(x) = 0, C samples s1x, . . . , s
n
x

$←
{0, 1}∗ of appropriate size and then proceeds as in the previous hybrid. By the pseudorandomness
of the key-homomorphic PRF respective to the keys K̂1

f , . . . , K̂
n
f , the distributions that C outputs

in hybrids H3 and H4 are computationally indistinguishable.

Hybrid H5. We change again the way that C evaluates rx whenever f(x) = 0. In this hybrid the
values rx are replaced with uniformly sampled strings. Indistinguishability will follow immediately
from the next lemma, since s1x, . . . , s

n
x are random values and dkReconx,f,Kf

(·) preserves uniformity.

Lemma 7.4. Let (KeyGen,Eval,HomKeyEval) be a secure key-homomorphic PRF for a key space K
and a function family G = {Gn : Kn → K}n∈N, where valid keys are samples from UK and the output
space is O. Let g ∈ Gn be a function such that g(UKn) and UK are computationally indistinguishable.
Then, the distribution HomKeyEval(g,UOn) is computationally indistinguishable from UO.

Proof. Via hybrids:

1. The distribution HomKeyEval(g,UOn).

2. The distribution HomKeyEval (g,EvalUK(0), . . . ,EvalUK(0)) (Ind. by the pseudorandomness).
Note that the distribution EvalUK(0) is concatenated n times and that the PRF input 0 was
chosen arbitrarily.

3. The distribution Evalg(UKn )(0) (Ind. by the correctness of homomorphic key evaluation).

4. The distribution EvalUK(0) (Ind. by the assumption about g).

5. The distribution UO (Ind. by the pseudorandomness).

7.2 Constructions of One-One cPRFs in the Double-Key Model

We now show that all of our information-theoretic constructions (see Section 6) have a double-key
variant (see Theorem 7.1) of the same complexity. Moreover, in all of those double-key con-
structions, the corresponding function dkReconx,f,Kf

(see Theorem 7.2 for definition) is linear and
preserves uniformity. Due to the similarity to the constructions in Section 6, we provide here an
overview.

Generic Predicates. For an input space F and any predicate family F , the common random

string K = {ky}y∈F consists of random bits ky
$← {0, 1} for every element in the field. The value

Kx is then simply kx. The double-key for a predicate f splits K into a set of authorized inputs
Kf = {ky : f(y) = 1}y∈F and a set of unauthorized inputs K̂f = {ky : f(y) = 0}y∈F. Clearly, K̂f is

uniformly distributed even given Kf , and recovering a value kx from K̂f is a linear function.
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AND Composition. Consider two perfect one-one cPRFs in the double-key model for some
predicate families F1 = {f1} and F2 = {f2}. In the construction for the predicate family
F1 ∧F2 = {f1 ∧ f2}f1∈F1,f2∈F2 , there is one instance of each of the underlying constructions. The

common random string K = (K1,K2) and double-keys Kf = (K1
f1 ,K

2
f2) and K̂f = (K̂1

f1 , K̂
2
f2)

where f = f1 ∧ f2 are a concatenation of the corresponding values in the underlying schemes.
The values Kx = K1

x + K2
x are the sum of the corresponding values in the underlying schemes.

Since the two instances are secure and generated independently, uniformity of K̂f given Kf fol-

lows immediately. Moreover, the algorithm dkRecon(x, f,Kf , K̂f ) that computes and outputs

dkRecon1(x, f1,K1
f1 , K̂

1
f1)+dkRecon2(x, f2,K2

f2 , K̂
2
f2) is clearly correct, linear in K̂f , and preserves

uniformity if the underlying schemes are correct, linear in K̂1
f1 and K̂2

f2 , and preserve uniformity.

Equality Testing. Consider equality testing over some field F. The common random string

K = (k0, k1) consists of two random elements in the field k0, k1
$← F, and we define Kx = k0 + xk1.

The double-key for some value y is defined as Kfy = k0 + yk1 and K̂fy = yk1. Note that by the

uniformity of k0 and k1, for all y 6= 0 the key part K̂fy is distributed uniformly in F even given
Kfy . To reconstruct Kx for some x 6= y, compute

dkRecon(x, y,Kfy , K̂fy) =
x− y
y

K̂fy +Kfy = (x− y)k1 + k0 + yk1 = k0 + xk1 = Kx ,

which is correct and linear in K̂fy .

Subset Predicates. Recall that we consider all subsets X ⊆ [N ] as the input space and all
subsets Y ⊆ [N ] as the predicate family, such that fY (X) = 1 if and only if X ⊆ Y . The common

random string K = {ki}i∈[N ] consists of random bits ki
$← {0, 1} for every element in the set [N ].

The value KX is then set to KX =
⊕

i∈X ki. The double-key for a predicate fY splits K into a

set of authorized elements KfY = {ki}i∈Y and a set of unauthorized elements K̂fY = {ki}i∈[N ]/Y .

Clearly, K̂fY is uniformly distributed even given KfY , and recovering a value ki from (KfY , K̂fY )
is a linear function that preserves uniformity.

Inner-Product Predicates. Consider inner-product testing of vectors of length ` over some

field F. The common random string K = (v, w) consists of a random vector v
$← F` and a random

field element w
$← F. We define Kx = 〈v,x〉. The double-key for a vector predicate y is defined

as Kfy = wy + v and K̂fy = w. Note that by the uniformity of v and w, the key part K̂fy is
distributed uniformly in F even given Kfy . To reconstruct Kx for some x, compute

dkRecon(x, fy,Kfy , K̂fy) = 〈Kfy ,x〉 − K̂fy〈y,x〉 = 〈wy + v,x〉 − w〈y,x〉 = 〈v,x〉 = Kx ,

which is correct, linear in K̂fy , and preserves uniformity.
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8 One-One Constrained PRF and CDS Protocols

In this section we study the connection between one-one constrained PRFs and conditional disclo-
sure of secrets (CDS) protocols, a cryptographic primitive used to construct many secure protocols
(see discussion in the introduction). In CDS protocols, Alice and Bob hold a secret and a common
random string, and each of them holds a private input for some two-input predicate. Then, each
of the parties sends one message to a referee, which is based on its private input, the secret, and
the common random string. The referee, knowing the inputs of the parties, should learn the secret
if and only if the inputs of the parties satisfy the predicate. We next provide a formal definition of
CDS protocols, originally presented in [GIKM00].

Definition 8.1 (Conditional Disclosure of Secrets Protocols). Let f : X×Y → {0, 1} be a predicate.
A conditional disclosure of secrets (CDS) protocol P for f with domain of secrets S, domain of
common random strings R, and finite message domains MA,MB consists of two deterministic
message computation functions EncodeA,EncodeB, where EncodeA : X×S×R→MA and EncodeB :
Y × S ×R→MB, and a deterministic reconstruction function Decrypt : X × Y ×MA ×MB → S.
We say that P is a CDS protocol for f if it satisfies the following requirements.

Correctness. For every inputs x ∈ X and y ∈ Y for which f(x, y) = 1, every secret s ∈ S, and
every common random string r ∈ R,

Decrypt(x, y,EncodeA(x, s, r),EncodeB(y, s, r)) = s .

Security. For every inputs x ∈ X and y ∈ Y for which f(x, y) = 0 and every secret s ∈ S,

(x, y,EncodeA(x, s, r),EncodeB(y, s, r), s) ≡ (x, y,EncodeA(x, s, r),EncodeB(y, s, r), u)

where r
$← R and u

$← S.

Message Size. The message size of a CDS protocol P is defined as the sizes of the messages sent
by the parties, i.e., log |MA|+ log |MB|.

We consider the index predicate, which gets as inputs an N -bit string (or a database) D and
an index i ∈ [N ], and returns the ith bit in D, denoted by Di.

Definition 8.2 (The Index Function). The index predicate is the predicate findex : {0, 1}N × [N ]→
{0, 1}, where findex(D, i) = Di.

We next show a transformation that preservers complexity from one-one constrained PRFs to
CDS protocols for the index predicate.

Theorem 8.3. Let findex : {0, 1}N × [N ]→ {0, 1} be the index predicate, and assume that for every
predicate f : [N ] → {0, 1} there is a one-one constrained PRF for f with complexity c(N). Then,
there is a CDS protocol for findex with message size c(N).

Proof. We consider a one-one constrained PRF scheme, when Alice holds a predicate f : [N ] →
{0, 1}, Bob holds an input x ∈ [N ], and both hold a common random string K ← Setup(1λ), where
Kf ← A(K, f) and Kx ← B(K,x). By the correctness requirement of the one-one constrained
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PRF, if f(x) = 1 then there exist a deterministic function Recon such that Recon(x, f,Kf ) = Kx,
and by security requirement, if f(x) = 0 then (f, x,Kf ,Kx) ≡ (f, x,Kf , u), where u← U|Kx|.

We show a construction of a CDS protocol for the index predicate findex, which is based on the
above one-one constrained PRF. The construction is as follows.

• Inputs: Alice holds D ∈ {0, 1}N and Bob holds i ∈ [N ]. We represent D as the predicate
fD : [N ]→ {0, 1}, where fD(j) = findex(D, j) = Dj .

• The secret: A string s of size at most |B(K, i)|.

• The common random string: An element K ← Setup(1λ).

• EncodeA(D,K): Alice computes and sends the message EncodeA(D,K) = A(K, fD) = KfD .

• EncodeB(i,K): Bob computes and sends the message EncodeB(i,K) = B(K, i)⊕ s′ = Ki⊕ s′,
where s′ = 0t ◦ s such that |s′| = |B(K, i)|.

• Decrypt(D, i,EncodeA(D,K),EncodeB(i,K)): If findex(D, i) = 1, the referee computes

Recon(i, fD,EncodeA(D,K))⊕ EncodeB(i,K).

Correctness. If findex(D, i) = 1, i.e., fD(i) = 1, then the referee computes

Recon(i, fD,EncodeA(D,K))⊕ EncodeB(i,K) = Recon(i, fD,KfD)⊕Ki ⊕ s′ = Ki ⊕Ki ⊕ s′ = s′

where the second equality follows from the correctness of the one-one constrained PRF. Hence, the
referee learns s′ and so the secret s.

Security. If findex(D, i) = 0, i.e., fD(i) = 0, then by the security of the one-one constrained PRF,

(fD, i,A(K, fD),B(K, i)) ≡ (fD, i,A(K, fD, ), u)

where K ← Setup(1λ) and u← U|B(K,i)|. Then, since s′ = EncodeB(i,K)⊕ B(K, i) we get that

(D, i,EncodeA(D,K),EncodeB(i,K), s′) ≡ (D, i,EncodeA(D,K),EncodeB(i,K), u)

where K ← Setup(1λ) and u← U|s′|.

Message size. The message size of this CDS protocol is equal to the complexity of the one-one
constrained PRF, which is c(N).

Using the above result and the reduction that appears in [GKW15], from CDS protocols for
general predicates to CDS protocols for the index predicate, we get a transformation from one-one
constrained PRF to CDS protocols for general predicates.

Corollary 8.4. Let g : [N ] × [N ] → {0, 1} be a predicate, and assume that for every predicate
f : [N ]→ {0, 1} there is a one-one constrained PRF for f with complexity c(N). Then, there is a
CDS protocol for g with message size c(N).

Note the best known CDS protocol for general predicates g : [N ] × [N ] → {0, 1} has message
size 2O(

√
logN log logN) [LVW17]. Thus, by the above lower bound of Ω(N) on the complexity of

one-one constrained PRFs of Theorem 5.1, we cannot get a similar transformation that preserve
complexity in the other direction (i.e., a transformation from CDS protocols to one-one constrained
PRFs).
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9 Computational Constructions

Every single-key constrained PRF is in particular a one-one constrained PRF under the same
security notion (which is either adaptive, key selective or challenge selective, see Theorem 4.1). For
completeness, we now go over some of the known computational constructions in the literature of
single-key constrained PRFs.

9.1 Constructions from OWFs

Punctured Predicates. As was shown in [BW13, KPTZ13, BGI14], the OWF-based PRF of
[GGM84] is in fact puncturable. Using our previous terminology, it supports punctured predicates
over the input space {0, 1}n as defined in Theorem 5.1. The complexity of the construction is
O(λ·n) where λ is the security parameter. Furthermore, [FKPR14] showed that the aforementioned
construction satisfies adaptive security with a security loss exponential in the number of queries.
Since we focus on the single-query scenario, we can use their proof strategy to claim adaptive
security on the implied one-one cPRF.

Theorem 9.1. Let F = {fy}y∈{0,1}n be the family of punctured predicates over the set of n-bit
strings, i.e., for any fixed y ∈ {0, 1}n, f6=y : {0, 1}n → {0, 1} where f6=y(x) = 1 if and only if
x 6= y. Then, for every security parameter λ, there is a one-one constrained PRF for F with
perfect correctness, computational adaptive security, and complexity O(λ · n).

One-Dimensional Interval Predicates. [KPTZ13] showed how to further generalized the
[GGM84] approach in order to support (one-dimensional) interval predicates without compromis-
ing the complexity. Such predicates allow to compute the PRF on all inputs x that are within
some range [a, b], i.e., all x such that a ≤ x ≤ b, where the key size is O(λ · log |b− a|). Due to
the similarity to the construction for punctured predicates, the adaptive security proof strategy
of [FKPR14] can also be applied here.

Theorem 9.2. Let F = {f[a,b]}a,b∈{0,1}n be the family of one-dimensional interval predicates over
the set of n-bit strings, i.e., for any fixed a, b ∈ {0, 1}n, f[a,b] : {0, 1}n → {0, 1} where f[a,b](x) = 1
if and only if a ≤ x ≤ b. Then, for every security parameter λ, there is a one-one constrained PRF
for F with perfect correctness, computational adaptive security, and complexity O(λ · n).

Multi-Dimensional Interval Predicates. We now consider multi-dimensional interval predi-
cates (that were previously studied in [BW07,SBC+07,GMW15]). Such predicates are characterized
by d intervals {[ai, bi]}i∈[d], and the input space is ({0, 1}n)d. An input X = (x1, . . . , xd) ∈ ({0, 1}n)d

is authorized by the multi-dimensional predicate f[ai,bi]i∈[d] if and only if ai ≤ xi ≤ bi for all i ∈ [d].

Each interval [ai, bi] can be verified by checking the n bits of the input corresponding to xi. In
particular, in order to verify that the ith dimension of X (i.e., xi) is within the ith range [ai, bi],
we have to check whether the ith block of n bits of X is within the range [ai, bi]. To do so, we will
use the AND composition lemma (that is, Theorem 6.2) sequentially d− 1 times on d independent
instances of one-one cPRFs for one-dimensional interval predicates over inputs of length n (as in
Theorem 9.2), where each instance i handles the ith block of X.

22



Theorem 9.3. Let F = {f[ai,bi]i∈[d]}ai,bi∈{0,1}n,i∈[d] be the family of d-dimensional interval pred-

icates over the set of n-bit strings, i.e., for any fixed ai, bi ∈ {0, 1}n for all i ∈ [d], f[ai,bi]i∈[d] :

({0, 1}n)d → {0, 1} where f[ai,bi]i∈[d](x1, . . . , xd) = 1 if and only if ai ≤ xi ≤ bi for all i ∈ [d]. Then,
for every security parameter λ, there is a one-one constrained PRF for Fn with perfect correctness,
computational adaptive security, and complexity O(d · λ · n).

9.2 Additional Constructions

Lattice Assumptions. [BV15] construct a selectively-secure single-key cPRF for all circuits from
LWE. [CC17] construct an adaptively-secure single-key cPRF for NC1 from LWE.

Group Assumptions. [AMN+18] construct a selectively-secure single-key bit-fixing cPRF from
DDH.
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