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Abstract. Solving a system of multivariate quadratic equations (MQ) is an NP-complete
problem whose complexity estimates are relevant to many cryptographic scenarios. In some
cases it is required in the best known attack; sometimes it is a generic attack (such as for
the multivariate PKCs), and sometimes it determines a provable level of security (such as
for the QUAD stream ciphers).
Under reasonable assumptions, the best way to solve generic MQ systems is the XL algorithm
implemented with a sparse matrix solver such as Wiedemann’s algorithm. Knowing how
much time an implementation of this attack requires gives us a good idea of how future
cryptosystems related to MQ can be broken, similar to how implementations of the General
Number Field Sieve that factors smaller RSA numbers give us more insight into the security
of actual RSA-based cryptosystems.
This paper describes such an implementation of XL using the block Wiedemann algorithm.
In 5 days we are able to solve a system with 32 variables and 64 equations over F16 (a
computation of about 260.3 bit operations) on a small cluster of 8 nodes, with 8 CPU cores
and 36 GB of RAM in each node. We do not expect system solvers of the F4/F5 family to
accomplish this due to their much higher memory demand. Our software also offers imple-
mentations for F2 and F31 and can be easily adapted to other small fields. More importantly,
it scales nicely for small clusters, NUMA machines, and a combination of both.

Keywords: XL, Gröbner basis, block Wiedemann, sparse solver, multivariate quadratic
systems

1 Introduction

Some cryptographic systems can be attacked by solving a system of multivariate quadratic equa-
tions. For example the symmetric block cipher AES can be attacked by solving a system of 8000
quadratic equations with 1600 variables over F2 as shown by Courtois and Pieprzyk in [5] or by
solving a system of 840 sparse quadratic equations and 1408 linear equations over 3968 variables
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of F256 as shown by Murphy and Robshaw in [17]. Multivariate cryptographic systems can be
attacked naturally by solving their multivariate quadratic system; see for example the analysis of
the QUAD stream cipher by Yang, Chen, Bernstein, and Chen in [22].

We describe a parallel implementation of an algorithm for solving quadratic systems that was
first suggested by Lazard in [11]. Later it was reinvented by Courtois, Klimov, Patarin, and Shamir
and published in [4]; they call the algorithm XL as an acronym for extended linearization: XL
extends a quadratic system by multiplying all equations with appropriate monomials and linearizes
it by treating each monomial as an independent variable. Due to this extended linearization, the
problem of solving a quadratic system turns into a problem of linear algebra.

XL is a special case of Gröbner basis algorithms (shown by Ars, Faugère, Imai, Kawazoe, and
Sugita in [1]) and can be used as an alternative to other Gröbner basis solvers like Faugère’s F4 and
F5 algorithms (introduced in [7] and [8]). An enhanced version of F4 is implemented for example in
the computer algebra system Magma, and is often used as standard benchmark by cryptographers.

There is an ongoing discussion on whether XL-based algorithms or algorithms of the F4/F5-
family are more efficient in terms of runtime complexity and memory complexity. To achieve a
better understanding of the practical behaviour of XL for generic systems, we describe a parallel
implementation of the XL algorithm for shared-memory systems, for small computer clusters,
and for a combination of both. Measurements of the efficiency of the parallelization have been
taken at small clusters of up to 8 nodes and shared-memory systems of up to 64 cores. A previous
implementation of XL is PWXL, a parallel implementation of XL with block Wiedemann described
in [15]. PWXL supports onl F2, while our implementation supports F2, F16, and F31. Furthermore,
our implementation is modular and can be extended to other fields. Comparisons on performance
of PWXL and our work will be shown in Section 6.3. We are planning to make our implementation
available to the public.

This paper is structured as follows: The XL algorithm is introduced in Section 2. The parallel
implementation of XL using the block Wiedemann algorithm is described in Section 5. Section 6
gives runtime measurements and performance values that are achieved by our implementation
for a set of parameters on several parallel systems as well as comparisons to PWXL and to the
implementation of F4 in Magma.

2 The XL algorithm

The original description of XL for multivariate quadratic systems can be found in the paper [4]; a
more general definition of XL for systems of higher degree is given in [3]. The following gives an
introduction of the XL algorithm for quadratic systems; the notation is adapted from [24]:

Consider a finite field K = Fq and a system A of m multivariate quadratic equations `1 = `2 =

· · · = `m = 0 for `i ∈ K[x1, x2, . . . , xn]. For b ∈ Nn denote by xb the monomial xb11 x
b2
2 . . . xbnn and

by |b| = b1 + b2 + · · ·+ bn the total degree of xb.
XL first chooses a D ∈ N as D := min{d : ((1 − λ)m−n−1(1 + λ)m)[d] ≤ 0} (see [23, Eq. (7)],

[13,6]), where f [i] denotes the coefficient of the degree-i term in the expansion of a polynomial
f(λ) e.g., (λ + 2)3[2] = (λ3 + 6λ2 + 12λ + 8)[2] = 6. XL extends the quadratic system A to the
system R(D) = {xb`i = 0 : |b| ≤ D−2, `i ∈ A} of maximum degree D by multiplying each equation
of A by all monomials of degree less than or equal to D − 2. Now, each monomial xd, |d| ≤ D is
considered a new variable to obtain a linear systemM. Note that the system matrix ofM is sparse
since each equation has the same number of non-zero coefficients as the corresponding equation of
the quadratic system A. Finally the linear systemM is solved, giving solutions for all monomials
and particularly for x1, x2, . . . , xn. Note that the matrix corresponding to the linear systemM is
the Macaulay matrix of degree D for the polynomial system A (see [12], e.g., defined in [9]).

2.1 The Block Wiedemann algorithm

The computationally most expensive task in XL is to find a solution for the sparse linear systemM
of equations over a finite field. There are two popular algorithms for that task, the block Lanczos
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algorithm [16] and the block Wiedemann algorithm [2]. The block Wiedemann algorithm was
proposed by Coppersmith in 1994 and is a generalization of the original Wiedemann algorithm [21].
It has several features that make it powerful for computation in XL: From the original Wiedemann
algorithm it inherits the property that the runtime is directly proportional to the weight of the
input matrix. Therefore, this algorithm is suitable for solving sparse matrices, which is exactly
the case for XL. Furthermore, big parts of the block Wiedemann algorithm can be parallelized on
several types of parallel architectures. The following paragraphs give a brief introduction to the
block Wiedemann algorithm. For more details please refer to [18, Section 4.2] and [2].

The basic idea of Coppersmith’s block Wiedemann algorithm for finding a solution x̄ 6= 0
of Bx̄ = 0 for B ∈ KN×N , x̄ ∈ KN (where B corresponds to the system matrix of M when
computing XL) is the same as in the original Wiedemann algorithm: Assume that the characteristic
polynomial f(λ) =

∑
0≤i f [i]λi of B is known. Since B is singular, it has an eigenvalue 0, thus

f(B) = 0 and f [0] = 0. We have:

f(B)z̄ =
∑
i>0

f [i]Biz̄ = B
∑
i>0

f [i]Bi−1z̄ = 0,

for any vector z̄ ∈ KN . Therefore, x̄ =
∑
i>0 f [i]Bi−1z̄, z̄ 6= 0 is a (hopefully non-zero) kernel

vector and thus a solution of the linear equation system. In fact it is possible to use any annihilating
polynomial f(λ) of B, i.e., a polynomial f(λ) 6= 0 such that f(B) = 0.

Wiedemann suggests to use the Berlekamp–Massey algorithm for the computation of f(λ).
Given a linearly recurrent sequence {a(i)}∞i=0, the algorithm computes c1, . . . , cd for some d such
that c1a(d−1) + c2a

(d−2) + · · ·+ cda
(0) = 0. Choosing a(i) = x̄TBBiz̄ with random vectors x̄ and z̄

(as delegates for BBi) as input and f [i] = cd−i, 0 ≤ i < d as output returns f(λ) as an annihilating
polynomial of B with high probability.

Coppersmith [2] proposed a modification of the Wiedemann algorithm that makes it more
suitable for modern computer architectures by operating in parallel on a block of ñ column vectors
z̄i, 0 ≤ i < ñ, of a matrix z ∈ KN×ñ. His block Wiedemann algorithm computes kernel vectors in
three steps which are called BW1, BW2, and BW3 for the remainder of this paper. The block sizes
of the block Wiedemann algorithm are the integers m̃ and ñ. They can be chosen freely for the
implementation such that they give the best performance on the target architecture for matrix and
vector operations, e.g., depending on the size of cache lines or vector registers. Step BW1 computes
the first N/m̃+N/ñ+ O(1) elements of a sequence {a(i)}∞i=0, ai =

(
x · (B ·Biz)

)T ∈ Kñ×m̃ using
random matrices x ∈ Km̃×N and z ∈ KN×ñ. This sequence is the input for the second step BW2,
a block variant of the Berlekamp–Massey algorithm. It returns a matrix polynomial f(λ) with
coefficients f [j] ∈ Kñ×ñ, that is used by step BW3 to compute up to ñ solution vectors in a
blocked fashion similar as described above for the original Wiedemann algorithm.

3 The block Berlekamp–Massey algorithm

This section first introduces a tweak that makes it possible to speed up computations of Copper-
smith’s variant of the Berlekamp–Massey algorithm. Later the parallelization of the algorithm is
described.

3.1 Reducing the cost of the block Berlekamp–Massey algorithm

The j-th iteration of Coppersmith’s block Berlekamp–Massey algorithm requires a matrix P (j) ∈
K(m+n)×(m+n) such that the first n rows of P (j)H(j) are all zeros. The main idea of this tweak is
to make P (j) have the form

P (j) =

(
In ∗
0 Im

)
E(j),
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Algorithm 1 Gaussian elimination in Coppersmith’s Berlekamp–Massey algorithm
1: function eliminate(H(j) ∈ K(m+n)×m, a list of nominal degrees d(j))
2: M ← H(j), P ← Im+n, E ← Im+n

3: sort the rows of M by the nominal degrees in decreasing order
4: apply the same permutation to P (j) and E(j)

5: for k = 1→ m do
6: for i = (m+ n+ 1− k)→ 1 do
7: if Mi,k 6= 0 then
8: v(M) ←Mi,
9: v(P ) ← Pi,
10: v(E) ← Ei

11: end if
12: end for
13: for l = i+ 1→ (m+ n+ 1− k) do
14: Ml−1 ←Ml,
15: Pl−1 ← Pl,
16: El−1 ← El

17: end for
18: M(m+n+1−k) ← v(M), P(m+n+1−k) ← v(P ), E(m+n+1−k) ← v(E)

19: for l = 1→ (m+ n− k) do
20: if Ml,k 6= 0 then
21: Ml ←Ml − v(M) · (Ml,k/v(M)k)
22: Pl ← Pl − v(P ) · (Ml,k/v(M)k)
23: end if
24: end for
25: end for
26: P (j) ← P
27: E(j) ← E
28: return (P (j) ∈ K(m+n)×(m+n), E(j) ∈ K(m+n)×(m+n))
29: end function

where E(j) is a permutation matrix corresponding to a permutation φ(j) (the superscript of φ(j) will
be omitted in this section). Therefore, the multiplication P (j)f (j) takes only deg(f (j))·Mul(n,m, n)
field operations (for the upper right submatrix in P (j)).

The special form of P (j) also makes the computation of H(j) more efficient: The bottom m
rows of each coefficient are simply permuted due to the multiplication by P (j), thus

(P (j)f (j)[k])i = (f (j)[k])φ(i),

for n < i ≤ m + n, 0 < k ≤ deg(f (j)). Since multiplication by Q corresponds to a multiplication
of the bottom m rows by λ, it does not modify the upper n rows of the coefficients. Therefore, the
bottom m rows of the coefficients of f (j+1) can be obtained from f (j) as

(f (j+1)[k])i = (QP (j)f (j)[k − 1])i = (f (j)[k − 1])φ(i),

for n < i ≤ m+ n, 0 < k ≤ deg(f (j)). Since the bottom right corner of P (j) is the identity matrix
of size m, this also holds for

((f (j+1)a)[j + 1])i = ((QP (j)f (j)a)[j + 1])i = ((f (j)a)[j])φ(i).

Thus, H(j+1)
i for n < i ≤ m+ n can be computed as

H
(j+1)
i = ((f (j+1)a)[j + 1])i = ((QP (j)f (j)a)[j + 1])i = ((f (j)a)[j])φ(i) = H

(j)
φ(i).

This means the last m rows of H(j+1) can actually be copied from H(j); only the first n rows of
H(j+1) need to be computed. Therefore the cost of computing any H(j>j0) is reduced to deg(f (j)) ·
Mul(n, n,m).
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The matrix P (j) can be assembled as follows: The matrix P (j) is computed using Algorithm 1.
In this algorithm a sequence of row operations is applied to M := H(j). The matrix H(j) has rank
m for all j ≥ j0. Therefore in the end the first n rows ofM are all zeros. The composition of all the
operations is P (j); some of these operations are permutations of rows. The composition of these
permutations is E(j):

P (j)(E(j))−1 =

(
In ∗
0 F (j)

)
⇐⇒ P (j) =

(
In ∗
0 F (j)

)
E(j).

The algorithm by Coppersmith requires that the first n rows of P (j)H(j) are all zero (see [2,
7]); there is no condition for the bottom m rows. However, the first n rows of P (j)H(j) are all
zero independently of the value of F (j). Thus, F (j) can be replaced by Im without harming this
requirement.

3.2 Parallelization of the block Berlekamp–Massey algorithm

The parallel implementation of the block Berlekamp–Massey algorithm on c nodes works as follows:
In each iteration step, the coefficients of f (j)(λ) are equally distributed over the computing nodes;
for 0 ≤ i < c, let S(j)

i be the set containing all indices of coefficients stored by node i during the
j-th iteration. Each node stores a copy of all coefficients of a(λ).

Due to the distribution of the coefficients, the computation of

H(j) = (f (j)a)[j] =

j∑
l=0

f (j)[l]a[j − l]

requires communication: Each node i first locally computes a part of the sum using only its own
coefficients S(j)

i of f (j). The matrix H(j) is the sum of all these intermediate results. Therefore, all
nodes broadcast their intermediate results to the other nodes. Each node computes H(j) locally;
Gaussian elimination is performed on every node locally and is not parallelized over the nodes.
Since only small matrices are handled, this sequential overhead is negligibly small.

Also the computation of f (j+1) requires communication. Recall that

f (j+1) = QP (j)f (j), for Q =

(
In 0
0 λ · Im

)
.

Each coefficient k is computed row-wise as

(f (j+1)[k])l =

{
((P (j)f (j))[k])l, for 0 < l ≤ n,
((P (j)f (j))[k − 1])l, for n < l ≤ m+ n.

Computation of f (j+1)[k] requires access to both coefficients k and (k − 1) of f (j). Therefore,
communication cost is reduced by distributing the coefficients equally over the nodes such that
each node stores a continuous range of coefficients of f (j) and such that the indices in S(j)

i+1 always
are larger than those in S(j)

i .
Due to the multiplication by Q, the degree of f (j) is increased by at most one in each iteration.

Therefore at most one more coefficient must be stored. The new coefficient obviously is the coeffi-
cient with highest degree and therefore must be stored on node (c−1). To maintain load balancing,
one node i(j) is chosen in a round-robin fashion to receive one additional coefficient; coefficients
are exchanged between neighbouring nodes to maintain an ordered distribution of the coefficients.

Observe, that only node (c − 1) can check whether the degree has increased, i.e. whether
deg(f (j+1)) = deg(f (j)) + 1, and whether coefficients need to be redistributed; this information
needs to be communicated to the other nodes. To avoid this communication, the maximum nominal
degree max(d(j)) is used to approximate deg(f (j)). Note that in each iteration all nodes can update a
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iteration j S
(j)
3 S

(j)
2 S

(j)
1 S

(j)
0 max(d(j))

0 ∅ ∅ {1} {0} 1
1 ∅ {2} {1} {0} 2
2 {3} {2} {1} {0} 3
3 {4} {3} {2} {1,0} 4
4 {5} {4} {3,2} {1,0} 5
5 {6} {5,4} {3,2} {1,0} 6
6 {7,6} {5,4} {3,2} {1,0} 7
. . . . . . . . . . . . . . . . . .

Table 1. Example for the workload distribution over 4 nodes. Iteration 0 receives the distribution in the
first line as input and computes the new distribution in line two as input for iteration 1.

local list of the nominal degrees. Therefore, all nodes decide locally without communication whether
coefficients need to be reassigned: If max(d(j+1)) = max(d(j)) + 1, the number i(j) is computed as

i(j) = max(d(j+1)) mod c.

Node i(j) is chosen to store one additional coefficient, the coefficients of nodes i, for i ≥ i(j), are
redistributed accordingly.

Table 1 illustrates the distribution strategy for 4 nodes. For example in iteration 3, node 1 has
been chosen to store one more coefficient. Therefore it receives one coefficient from node 2. Another
coefficient is moved from node 3 to node 2. The new coefficient is assigned to node 3.

This distribution scheme does not avoid all communication for the computation of f (j+1): First
all nodes compute P (j)f (j) locally. After that, the coefficients are multiplied by Q. For almost
all coefficients of f (j), both coefficients k and (k − 1) of P (j)f (j) are stored on the same node,
i.e. k ∈ S(j)

(i) and (k − 1) ∈ S(j)
(i) . Thus, f

(j+1)[k] can be computed locally without communication.
In the example in Figure 1, this is the case for k ∈ {0, 1, 2, 4, 5, 7, 9, 10}. Note that the bottom m
rows of f (j+1)[0] and the top n rows of f (j+1)[max(d(j+1))] are 0.

Communication is necessary if coefficients k and (k − 1) of P (j)f (j) are not on the same node.
There are two cases:

– In case k − 1 = max(S
(j+1)
i−1 ) = max(S

(j)
i−1), i 6= 1, the bottom m rows of (P (j)f (j))[k − 1] are

sent from node i − 1 to node i. This is the case for k ∈ {6, 3} in Figure 1. This case occurs if
in iteration j + 1 no coefficient is reassigned to node i− 1 due to load balancing.

– In case k = min(S
(j)
i ) = max(S

(j+1)
i−1 ), i 6= 1, the top n rows of (P (j)f (j))[k] are sent from node

i to node i− 1. The example in Figure 1 has only one such case, namely for coefficient k = 8.
This happens, if coefficient k got reassigned from node i to node i− 1 in iteration j + 1.

If max(d(j+1)) = max(d(j)), i.e. the maximum nominal degree is not increased during itera-
tion step j, only the first case occurs since no coefficient is added and therefore reassignment of
coefficients is not necessary.

The implementation of this parallelization scheme uses the Message Passing Interface (MPI)
for computer clusters and OpenMP for multi-core architectures. For OpenMP, each core is treated
as one node in the parallelization scheme. Note that the communication for the parallelization
with OpenMP is not programmed explicitly since all cores have access to all coefficients; how-
ever, the workload distribution is performed as described above. For the cluster implementation,
each cluster node is used as one node in the parallelization scheme. Broadcast communication
for the computation of H(j) is implemented using a call to the MPI_Allreduce function. One-to-
one communication during the multiplication by Q is performed with the non-blocking primitives
MPI_Isend and MPI_Irecv to avoid deadlocks during communication. Both OpenMP and MPI can
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0

0

P (j)f (j)

f (j+1)

S
(j)
i

S
(j+1)
i

012345678910 k

node 3 node 2 node 1 node 0

Figure 1. Example for the communication between 4 nodes. The top n rows of the coefficients are colored
in blue, the bottom m rows are colored in red.

be used together for clusters of multi-core architectures. For NUMA systems the best performance
is achieved when one MPI process is used for each NUMA node since this prevents expensive
remote-memory accesses during computation.

The communication overhead of this parallelization scheme is very small. In each iteration, each
node only needs to receive and/or send data of total size O(n2). Expensive broadcast communi-
cation is only required rarely compared to the time spent for computation. Therefore this paral-
lelization of Coppersmith’s Berlekamp–Massey algorithm scales well on a large number of nodes.
Furthermore, since f (j) is distributed over the nodes, the memory requirement is distributed over
the nodes as well.

4 Thomé’s subquadratic version of the block Berlekamp–Massey
algorithm

In 2002 Thomé presented an improved version of Coppersmith’s variation of the Berlekamp–Massey
algorithm [20]. Thomé’s version is asymptotically faster: It reduces the complexity from O(N2) to
O(N log2(N)) (assuming that m and n are constants). The subquadratic complexity is achieved
by converting the block Berlekamp–Massey algorithm into a recursive divide-and-conquer process.
Thomé’s version builds the output polynomial f(λ) of BW2 using a binary product tree; therefore,
the main operations in the algorithm are multiplications of matrix polynomials. The implementa-
tion of Coppersmith’s version of the algorithm is used to handle bottom levels of the recursion in
Thomé’s algorithm, as suggested in [20, Section 4.1].

The main computations in Thomé’s version of the Berlekamp–Massey algorithm are multipli-
cations of matrix polynomials. The first part of this section will take a brief look how to implement
these efficiently. The second part gives an overview of the approach for the parallelization of
Thomé’s Berlekamp–Massey algorithm.

4.1 Matrix polynomial multiplications

In order to support multiplication of matrix polynomials with various operand sizes in Thomé’s
Berlekamp–Massey algorithm, several implementations of multiplication algorithms are used in-
cluding Karatsuba, Toom–Cook, and FFT-based multiplications. FFT-based multiplications are
the most important ones because they are used to deal with computationally expensive multipli-
cations of operands with large degrees.

Different kinds of FFT-based multiplications are used for different fields: The field F2 uses the
radix-3 FFT multiplication presented in [19]. For F16 the operands are transformed into polynomials
over F169 by packing groups of 5 coefficients together. Then a mixed-radix FFT is applied using
a primitive r-th root of unity in F169 . In order to accelerate FFTs, it is ensured that r is a
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number without large (≥ 50) prime factors. F169 is chosen because it has several advantages.
First, by exploiting the Toom-Cook multiplication, a multiplication in F169 takes only 9log3 5 = 25
multiplications in F16. Moreover, by setting F16 = F2[x]/(x4 + x+ 1) and F169 = F16[y]/(y9 + x),
reductions after multiplications can be performed efficiently because of the simple form of y9 + x.
Finally, 169 − 1 has many small prime factors and thus there are plenty of choices of r to cover
various sizes of operands.

4.2 Parallelization of Thomé’s Berlekamp–Massey algorithm

Thomé’s Berlekamp–Massey algorithm uses multiplication of large matrix polynomials and Cop-
persmith’s Berlekamp–Massey algorithm as building blocks. The parallelization of Coppersmith’s
version has already been explained. Here the parallelization of the matrix polynomial multiplica-
tions is described on the example of the FFT-based multiplication.

The FFT-based multiplication is mainly composed of 3 stages: forward FFTs, point-wise mul-
tiplications, and the reverse FFT. Let f, g be the inputs of forward FFTs and f ′, g′ be the cor-
responding outputs; the point-wise multiplications take f ′, g′ as operands and give h′ as output;
finally, the reverse FFT takes h′ as input and generates h.

For this implementation, the parallelization scheme for Thomé’s Berlekamp–Massey algorithm
is quite different from that for Coppersmith’s: Each node deals with a certain range of rows. In the
forward and reverse FFTs the rows of f , g, and h′ are independent. Therefore, each FFT can be
carried out in a distributed manner without communication. The problem is that the point-wise
multiplications require partial f ′ but full g′. To solve this each node collects the missing rows
of g′ from the other nodes. This is done by using the function MPI_Allgather. Karatsuba and
Toom-Cook multiplication are parallelized in a similar way.

One drawback of this scheme is that the number of nodes is limited by the number of rows of
the operands. However, when the Macaulay matrix B is very large, the runtime of BW2 is very
small compared to BW1 and BW3 since it is subquadratic in N . In this case using a different,
smaller cluster or a powerful multi-core machine for BW2 might give a sufficient performance as
suggested in [10]. Another drawback is, that the divide-and-conquer approach and the recursive
algorithms for polynomial multiplication require much more memory than Coppersmith’s version
of the Berlekamp–Massey algorithm. Thus Coppersmith’s version might be a better choice on
memory-restricted architectures or for very large systems.

5 Implementation of XL

Stage BW1 of the block Wiedemann algorithm computes a(i) =
(
x · (B ·Biz)

)T , 0 ≤ i ≤ N/m̃ +
N/ñ+ O(1). We do this efficiently using two sparse-matrix multiplications by making the random
matrices x and z deliberately sparse. We compute a sequence {t(i)}∞i=0 of matrices t(i) ∈ KN×n

defined as

t(i) =

{
Bz for i = 0

Bt(i−1) for i > 0.

Thus, a(i) can be computed as a(i) = (xt(i))T . In step BW3 we evaluate the annihilating polynomial
f(λ) by applying Horner’s scheme, again using two sparse-matrix multiplications by computing

W (j) =

{
z · (f [deg(f)]) for j = 0,

z · (f [deg(f)− j]) +B ·W (j−1) for 0 < j ≤ deg(f).

For details on the steps BW1, BW2, and BW3 please refer to [18, Section 4.2].
Assuming that m̃ = c · ñ for some constant c ≥ 1, the asymptotic time complexity of step

BW1 and BW2 can be written as O
(
N2 · wB

)
, where wB is the average number of nonzero entries

per row of B. Note that BW3 actually requires about half of the time of BW1 since it requires
only about halve as many iterations. The asymptotic time complexity of Coppersmith’s version of
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the Berlekamp–Massey algorithm in step BW2 is O
(
N2 · ñ

)
. Thomé presents an improved version

of Coppersmith’s block Berlekamp–Massey algorithm in [20]. Thomé’s version is asymptotically
faster: It reduces the complexity of BW2 from O(N2 · ñ) to O

(
N · log2(N) · ñ

)
. The subquadratic

complexity is achieved by converting the block Berlekamp–Massey algorithm into a recursive divide-
and-conquer process.

Since steps BW1 and BW3 have a higher asymptotic time complexity than Thomé’s version
of step BW2, we do not describe our implementation, optimization, and parallelization of Cop-
persmith’s and Thomé’s versions of step BW2 in detail in this paper for the sake of brevity. The
interested reader is referred to [18, Chap. 4] for details. However, we discuss the performance of
our implementations in Section 6.

Since the system matrixM has more rows than columns, some rows must be dropped randomly
to obtain a square matrix B. Observe that due to the extension step of XL the entries of the
original quadratic system A appear repeatedly in the matrix B at well-defined positions based on
the enumeration scheme. Therefore, it is possible to generate the entries of B on demand spending a
negligible amount of memory. However, the computation of the entry positions requires additional
time; to avoid this computational overhead, we store the Macaulay matrix B in a compact memory
format (see [18, Section 4.5.3]). This gives a significant speedup in the computation time—given
that the matrix B fits into available memory.

5.1 Efficient matrix multiplication

All matrix multiplications of the shape D = EF that we perform during XL are either multiplica-
tions of a sparse matrix by a dense matrix, or multiplications of a dense matrix by a dense matrix
with matrices of a small size. For these cases, schoolbook multiplication is more efficient than the
asymptotically more efficient Strassen algorithm or the Coppersmith–Winograd algorithm.

However, when computing in finite fields, the cost of matrix multiplications can be significantly
reduced by trading expensive multiplications for cheap additions—if the field size is significantly
larger than the row weight of E. This is the case for small fields like, for example, F16 or F31. We
reduce the number of actual multiplications for a row r of E by summing up all row vectors of F
which are to be multiplied by the same field element and performing the multiplication on all of
them together. A temporary buffer bα ∈ Kn, α ∈ K of vectors of length n is used to collect the
sum of row vectors that ought to be multiplied by α. For all entries Er,c, row c of F is added to
bEr,c

. Finally, b can be reduced by computing
∑
α · bα, α 6= 0, α ∈ K, which gives the result for

row r of the matrix D.
With the strategy explained so far, computing the result for one row of E takes wE + |K| − 2

additions and |K| − 2 scalar multiplications (there is no need for the multiplication by 0 and
1, and for the addition of 0). The number of actual multiplications can be further reduced by
exploiting the distributivity of the scalar multiplication of vectors: Assume in the following that
K = Fpk = Fp[x]/(f(x)), with p prime and f(x) an irreducible polynomial with deg(f) = k. When
k = 1, the natural mapping from K to {0, 1, . . . , p− 1} ⊂ N induces an order of the elements. The
order can be extended for k > 1 by ∀β, γ ∈ K : β > γ ⇐⇒ β[i] > γ[i], i = max({j : β[j] 6= γ[j]}).
We decompose each scalar factor α ∈ K \ {0, 1, x1, . . . , xk−1} of a multiplication α · bα into two
components β, γ ∈ K such that β, γ < α and β + γ = α. Starting with the largest α, iteratively
add bα to bβ and bγ and drop buffer bα. The algorithm terminates when all buffers bα, α ∈
K \{0, 1, x1, . . . , xk−1} have been dropped. Finally, the remaining buffers bα, α ∈ {1, x1, . . . , xk−1}
are multiplied by their respective scalar factor (except b1) and summed up to the final result. This
reduces the number of multiplications to k − 1. All in all the computation on one row of E (with
row weight wE) costs wE + 2(|K| − k − 1) + k − 1 additions and k − 1 scalar multiplications. For
example the computations in F16 require wE + 25 additions and 3 multiplications per row of a
matrix E.
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Figure 2. Plot of a Macaulay matrix for a system with 8 variables, 10 equations, using graded reverse
lexicographical (grevlex) monomial order.

5.2 Parallel Macaulay matrix multiplication

The most expensive part in the computation of steps BW1 and BW3 of XL is a repetitive multi-
plication of the shape tnew = B · told, where tnew, told ∈ KN×ñ are dense matrices and B ∈ KN×N

is a sparse Macaulay matrix with an average row weight wB .
For generic systems, the Macaulay matrix B has an expected number of non-zero entries per

row of (|K| − 1)/|K| ·
(
n+2
2

)
. However, in our memory efficient data format for the Macaulay

matrix we also store the zero entries from the original system. This results in a fixed row weight
wB = |K| ·

(
n+2
2

)
. This is highly efficient in terms of memory consumption and computation time

for F16, F31, and larger fields (see [18, Chap. 4]). Since there is a guaranteed number of entries per
row (i.e. the row weight wB) we compute the Macaulay matrix multiplication in row order in a big
loop over all row indices as described in the previous section.

The parallelization of the Macaulay matrix multiplication of steps BW1 and BW3 is imple-
mented in two ways: On multi-core architectures OpenMP is used to keep all cores busy; on cluster
architectures the Message Passing Interface (MPI) and InfiniBand verbs are used to communicate
between the cluster nodes. Both approaches can be combined for clusters of multi-core nodes.

The strategy of the workload distribution is similar on both multi-core systems and cluster
systems. Figure 2 shows an example of a Macaulay matrix. Our approach for efficient matrix mul-
tiplications (described in the previous section) trades multiplications for additions. The approach is
most efficient, if the original number of scalar multiplications per row is much higher than the order
of the field. Since the row weight of the Macaulay matrix is quite small, splitting the rows between
computing nodes reduces the efficiency of our approach. Therefore, the workload is distributed by
assigning blocks of rows of the Macaulay matrix to the computing units.

Parallelization for Shared-Memory Systems: We parallelize the data-independent loop over
the rows of the Macaulay matrix using OpenMP with the directive “#pragma omp parallel for”.
The OpenMP parallelization on UMA systems encounters no additional communication cost al-
though the pressure on shared caches may be increased. On NUMA systems the best performance
is achieved if the data is distributed over the NUMA nodes in a way that takes the higher cost of
remote memory access into account. However, the access pattern to told is very irregular due to the
structure of the Macaulay matrix: In particular, the access pattern of each core does not necessar-
ily fully cover memory pages. Furthermore, the same memory page is usually touched by several
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cores. The same is true for tnew, since after each iteration tnew and told are swapped by switching
their respective memory regions. Therefore, we obtained the shortest runtime by distributing the
memory pages interleaved (in a round-robin fashion) over the nodes.

Parallelization for Cluster Systems: The computation on one row of the Macaulay matrix
depends on many rows of the matrix told. A straightforward approach is to make the full matrix
told available on all cluster nodes. This can be achieved by an all-to-all communication step after
each iteration of BW1 and BW3. If B were a dense matrix, such communication would take only
a small portion of the overall runtime. But since B is a sparse Macaulay matrix which has a very
low row weight, the computation time for one single row of B takes only a small amount of time.
In fact this time is in the order of magnitude of the time that is necessary to send one row of tnew
to all other nodes during the communication phase. Therefore, this simple workload-distribution
pattern gives a large communication overhead.

This overhead is hidden when communication is performed in parallel to computation. Today’s
high-performance network interconnects are able to transfer data via direct memory access (DMA)
without interaction with the CPU, allowing the CPU to continue computations alongside communi-
cation. It is possible to split the computation of tnew into two column blocks; during computation
on one block, previously computed results are distributed to the other nodes and therefore are
available at the next iteration step. Under the condition that computation takes more time than
communication, the communication overhead can almost entirely be hidden. Otherwise speedup
and therefore efficiency of cluster parallelization is bounded by communication cost.

Apart from hiding the communication overhead it is also possible to totally avoid all commu-
nication by splitting told and tnew into independent column blocks for each cluster node. However,
splitting told and tnew has an impact either on the runtime of BW1 and BW3 (if the block size
becomes too small for efficient computation) or on the runtime of BW2 (since the block size has a
strong impact on its runtime and memory demand).

We implemented both approaches since they can be combined to give best performance on a
target system architecture. The following paragraphs explain the two approaches in detail:

a) Operating on Two Shared Column Blocks of told and tnew: For this approach, the matrices
told and tnew are split into two column blocks told,0 and told,1 as well as tnew,0 and tnew,1. The
workload is distributed over the nodes row-wise as mentioned before. First each node computes
the results of its row range for column block tnew,0 using rows from block told,0. Then a non-
blocking all-to-all communication is initiated which distributes the results of block tnew,0 over
all nodes. While the communication is going on, the nodes compute the results of block tnew,1
using data from block told,1. After computation on tnew,1 is finished, the nodes wait until the
data transfer of block tnew,0 has been accomplished. Ideally communication of block tnew,0 is
finished earlier than the computation of block tnew,1 so that the results of block tnew,1 can be
distributed without waiting time while the computation on block tnew,0 goes on with the next
iteration step.
However, looking at the structure of the Macaulay matrix (an example is shown in Figure 2)
one can observe that this communication scheme performs much more communication than
necessary. For example on a cluster of four computing nodes, node 0 computes the top quarter
of the rows of matrices tnew,0 and tnew,1. Node 1 computes the second quarter, node 2 the
third quarter, and node 3 the bottom quarter. Node 3 does not require any row that has been
computed by node 0 since the Macaulay matrix does not have entries in the first quarter of
the columns for these rows. The obvious solution is that a node i sends only these rows to a
node j that are actually required by node j in the next iteration step.
This communication pattern requires to send several data blocks to individual cluster nodes
in parallel to ongoing computation. This can not be done efficiently using MPI. Therefore, we
circumvent the MPI API and program the network hardware directly. Our implementation uses
an InfiniBand network; the same approach can be used for other high-performance networks. We
access the InfiniBand hardware using the InfiniBand verbs API. Programming the InfiniBand
cards directly has several benefits: All data structures that are required for communication can
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be prepared offline; initiating communication requires only one call to the InfiniBand API. The
hardware is able to perform all operations for sending and receiving data autonomously after
this API call; there is no need for calling further functions to ensure communication progress
as it is necessary when using MPI. Finally, complex communication patterns using scatter-
gather lists for incoming and outgoing data do not have a large overhead. This implementation
reduces communication to the smallest amount possible for the cost of only a negligibly small
initialization overhead.
This approach of splitting told and tnew into two shared column blocks has the disadvantage
that the entries of the Macaulay matrix need to be loaded twice per iteration, once for each
block. This gives a higher memory contention and more cache misses than when working on a
single column block. However, these memory accesses are sequential. It is therefore likely that
the access pattern can be detected by the memory logic and that the data is prefetched into
the caches.

b) Operating on Independent Column Blocks of told and tnew: Any communication during steps
BW1 and BW3 can be avoided by splitting the matrices told and tnew into independent column
blocks for each cluster node. The nodes compute over the whole Macaulay matrix B on a
column stripe of told and tnew. All computation can be accomplished locally; the results are
collected at the end of the computation of these steps.
Although this is the most efficient parallelization approach when looking at communication
cost, the per-node efficiency drops drastically with higher node count: For a high node count,
the impact of the width of the column stripes of told and tnew becomes even stronger than
for the previous approach. Therefore, this approach only scales well for small clusters. For
a large number of nodes, the efficiency of the parallelization declines significantly. Another
disadvantage of this approach is that since the nodes compute on the whole Macaulay matrix,
all nodes must store the whole matrix in their memory. For large systems this is may not be
feasible.

Both approaches for parallelization have advantages and disadvantages; the ideal approach can
only be found by testing each approach on the target hardware. For small clusters approach b)
might be the most efficient one although it loses efficiency due to the effect of the width of told
and tnew. The performance of approach a) depends heavily on the network configuration and the
ratio between computation time and communication time. Both approaches can be combined by
splitting the cluster into independent partitions; the workload is distributed over the partitions
using approach b) and over the nodes within one partition using approach a).

6 Experimental results

This section gives an overview of the performance and the scalability of our XL implementation for
generic systems. Experiments have been carried out on two computer systems: a 64-core NUMA
system and an eight node InfiniBand cluster. Table 2 lists the key features of these systems.

6.1 Impact of the block size

We measured the impact of the block size of the block Wiedemann algorithm on the performance of
the implementation on a single cluster node (without cluster communication). We used a quadratic
system with 16 equations and 14 variables over F16. In this case, the degree D for the linearization
is 9. The input for the algorithm is a Macaulay matrix B with N = 817190 rows (and columns)
and row weight wB = 120. To reduce the parameter space, we fix m̃ to m̃ = ñ.

Figure 3 shows the runtime for block sizes 32, 64, 128, 256, 512, and 1024. Given the fixed size
of the Macaulay matrix and m̃ = ñ, the number of field operations for BW1 and BW2 is roughly
the same for different choices of the block size ñ since the number of iterations is proportional
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NUMA Cluster
CPU

Name AMD Opteron 6276 Intel Xeon E5620
Microarchitecture Bulldozer Interlagos Nehalem
Frequency 2300 MHz 2400 MHz
Number of CPUs per socket 2 1
Number of cores per socket 16 (2 x 8) 4
Level 1 data-cache size 16 × 48 KB 4 × 32 KB
Level 2 data-cache size 8 × 2 MB 4 × 256 KB
Level 3 data-cache size 2 × 8 MB 8 MB
Cache-line size 64 byte 64 byte

System Architecture
Number of NUMA nodes 4 sockets × 2 CPUs 2 sockets × 1 CPU
Number of cluster nodes — 8
Total number of cores 64 64
Network interconnect — InfiniBand MT26428

2 ports of 4×QDR, 32 Gbit/s
Memory

Memory per CPU 32 GB 18 GB
Memory per cluster node — 36 GB
Total memory 256 GB 288 GB

Table 2. Computer architectures used for the experiments
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Figure 3. Runtime and memory consumption of XL 16-14 over different block sizes on a single cluster
node with two CPUs (8 cores in total) and 36 GB RAM.
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to 1/ñ and number of field operations per iteration is roughly proportional to ñ. However, the
runtime of the computation varies depending on ñ.

During the i-th iteration step of BW1 and BW3, the Macaulay matrix is multiplied with a
matrix t(i−1) ∈ FN×ñ16 . For F16 each row of t(i−1) requires ñ/2 bytes of memory. In the cases
m̃ = ñ = 32 and m̃ = ñ = 64 each row thus occupies less than one cache line of 64 bytes. This
explains why the best performance in BW1 and BW3 is achieved for larger values of ñ. The runtime
of BW1 and BW3 is minimal for block sizes m̃ = ñ = 256. In this case one row of t(i−1) occupies
two cache lines. The reason why this case gives a better performance than m̃ = ñ = 128 might be
that the memory controller is able to prefetch the second cache line. For larger values of m̃ and ñ
the performance declines probably due to cache saturation.

According to the asymptotic time complexity of Coppersmith’s and Thomé’s versions of the
Berlekamp–Massey algorithm, the runtime of BW2 should be proportional to ñ. However, this
turns out to be the case only for moderate sizes of ñ; note the different scale of the graph in
Figure 3 for a runtime of more than 2000 seconds. For m̃ = ñ = 256 the runtime of Coppersmith’s
version of BW2 is already larger than that of BW1 and BW3, for m̃ = ñ = 512 and m̃ = ñ = 1024
both versions of BW2 dominate the total runtime of the computation. Thomé’s version is faster
than Coppersmith’s version for small and moderate block sizes. However, by doubling the block
size, the memory demand of BW2 roughly doubles as well; Figure 3 shows the memory demand of
both variants for this experiment. Due to the memory–time trade-off of Thomé’s BW2, the memory
demand exceeds the available RAM for a block size of m̃ = ñ = 512 and more. Therefore, memory
pages are swapped out of RAM onto hard disk which makes the runtime of Thomé’s BW2 longer
than that of Coppersmith’s version of BW2.

6.2 Scalability experiments

The scalability was measured using a quadratic system with 18 equations and 16 variables over
F16. The degree D for this system is 10. The Macaulay matrix B has a size of N = 5 311 735 rows
and columns; the row weight is wB = 153. Since this experiment is not concerned about peak
performance but about scalability, a block size of m̃ = ñ = 256 is used. For this experiment, the
implementation of the block Wiedemann algorithm ran on 1, 2, 4, and 8 nodes of the cluster and
on 1 to 8 CPUs of the NUMA system. The approach a) (two shared column blocks) was used on
the cluster system for all node counts.

Given the runtime T1 for one computing node and Tp for p computing nodes, the parallel
efficiency Ep on the p nodes is defined as Ep = T1/pTp. Figure 4 shows the parallel speedup and
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the parallel efficiency of BW1 and BW2; the performance of BW3 behaves very similarly to BW1
and thus is not depicted in detail. These figures show that BW1 and Coppersmith’s BW2 have
a nice speedup and an efficiency of at least 90% on 2, 4, and 8 cluster nodes. The efficiency of
Thomé’s BW2 is only around 75% on 4 nodes and drops to under 50% on 8 nodes. In particular
the polynomial multiplications require a more efficient parallelization approach. However, Thomé’s
BW2 takes only a small part of the total runtime for this system size; for larger systems it is even
smaller due to its smaller asymptotic time complexity compared to steps BW1 and BW3. Thus, a
lower scalability than BW1 and BW3 can be tolerated for BW2.

For this problem size, our parallel implementation of BW1 and BW3 scales very well for up to
eight nodes. However, at some point the communication time is going to catch up with computation
time: The computation time roughly halves with every doubling of the number of cluster nodes,
while the communication demand per node shrinks with a smaller slope. Therefore, at a certain
number of nodes communication time and computation time are about the same and the parallel
efficiency declines for any larger number of nodes. We do not have access to a cluster with a fast
network interconnect and a sufficient amount of nodes to measure when this point is reached, thus
we can only give an estimation: Figure 5 shows the expected time of computation and communi-
cation for larger cluster sizes. We computed the amount of data that an individual node sends and
receives depending on the number of computing nodes. We use the maximum of the outgoing data
for the estimation of the communication time. For this particular problem size, we expect that for
a cluster of around 16 nodes communication time is about as long as computation time and that
the parallel efficiency is going to decline for larger clusters.

On the NUMA system, the scalability is similar to the cluster system. BW1 achieves an efficiency
of over 85% on up to 8 NUMA nodes. The workload was distributed such that each CPU socket
was filled up with OpenMP threads as much as possible. Therefore, in the case of two NUMA
nodes (16 threads) the implementation achieves a high efficiency of over 95% since a memory
controller on the same socket is used for remote memory access and the remote memory access
has only moderate cost. When using more than one NUMA node, the efficiency declines to around
85% due to the higher cost of remote memory access between different sockets. Also on the NUMA
system the parallelization of Thomé’s BW2 achieves only a moderate efficiency of around 50% for 8
NUMA nodes. The parallelization scheme used for OpenMP does not scale well for a large number
of threads. The parallelization of Coppersmith’s version of BW2 scales almost perfectly on the
NUMA system. The experiment with this version of BW2 is performed using hybrid parallelization
by running one MPI process per NUMA node and one OpenMP thread per core. The overhead for
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communication is sufficiently small that it does not have much impact on the parallel efficiency of
up to 8 NUMA nodes.

Our experiments show that the shape of the Macaulay matrix has a large impact on the perfor-
mance and the scalability of XL. Currently, we are using graded reverse lexicographical order for
the Macaulay matrix. However, as opposed to Gröbner basis solvers like F4 and F5, for XL there is
no algorithmic or mathematic requirement for any particular ordering. In our upcoming research,
we are going to examine if another monomial order or a redistribution of columns and rows of the
Macaulay matrix has a positive impact on the performance of our implementation.

6.3 Comparison with PWXL and Magma F4

To put our numbers into context, we compare our work with two other Gröbner basis solvers in
this section: with PWXL, a parallel implementation of XL with block Wiedemann for F2 described
in [15], and with the implementation of Faugère’s F4 algorithm [7] in the computational algebra
system Magma.

Comparison with PWXL: Figure 6 compares the runtime of PWXL and our implementation
for systems in F2 with m = n. We ran our XL implementation on our cluster system (see Table 2)
while PWXL was running on a machine with four six-core AMD Opteron 8435 CPUs, running at
2.6 GHz.

Our implementation outperforms PWXL for the largest cases given in the paper, e.g., for
n = 33 our implementation is 24 times faster running on 8 cluster nodes (64 CPU cores) and still 6
times faster when scaling to 16 CPU cores. This significant speedup may be explained by the fact
that PWXL is a modification of the block-Wiedemann solver for factoring RSA-768 used in [10].
Therefore, the code may not be well optimized for the structure of Macaulay matrices. However,
these numbers show that our implementation achieves high performance for computations in F2.

Comparison with F4: Figure 7 compares time and memory consumption of the F4 implemen-
tation in Magma V2.17-12 and our implementation of XL for systems in F16 with m = 2n. When
solving the systems in Magma we coerce the systems into F256, because for F256 Magma performs
faster than when using F16 directly. The computer used to run F4 has an 8 core Xeon X7550 CPU
running at 2.0 GHz; however, F4 uses only one core of it. We ran XL on our NUMA system using all
64 CPU cores. For this comparison we use Coppersmith’s version of BW2 since it is more memory
efficient than Thomé’s version.
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Note that there is a jump in the graph when going from n = 21 to n = 22 for XL our imple-
mentation, similarly when going from n = 23 to n = 24 for F4. This is due to an increment of
the degree D from 5 to 6, which happens earlier for XL. Therefore, F4 takes advantage of a lower
degree in cases such as n = 22, 23. Other XL-based algorithms like Mutant-XL [14] may be able
to fill this gap. In this paper we omit a discussion of the difference between the degrees of XL and
F4/F5. However, in cases where the degrees are the same for both algorithms, our implementation
of XL is better in terms of runtime and memory consumption.

For n = 25, the memory consumption of XL is less than 2% of that of F4. In this case, XL runs
338 times faster on 64 cores than F4 on one single core, which means XL is still faster when the
runtime is normalized to single-core performance by multiplying the runtime by 64.

6.4 Performance for computation on large systems

Table 3 presents detailed statistics of some of the largest systems we are able to solve in a moderate
amount of time (within at most one week). In the tables the time (BW1, BW2, BW3, and total)
is measured in seconds, and the memory is measured in GB. Note that for the cluster we give the
memory usage for a single cluster node. While all the fields that we have implemented so far are
presented in the table, we point out that the most optimization has been done for F16.

The system with n = 32 variables and m = 64 equations over F16 listed in Table 3 is the largest
case we have tested. The system was solved in 5 days on the cluster using block sizes m̃ = 256
and ñ = 128. With n = 32 and D = 7 we have N =

(
n+D
D

)
=
(
32+7

7

)
= 15 380 937 and wB =(

n+2
2

)
=
(
32+2

2

)
= 561. There are roughlyN/ñ+N/m̃ iterations in BW1 andN/ñ iterations in BW3.

This leads to 2N/ñ + N/m̃ Macaulay matrix multiplications, each takes about N · (wB + 25) · ñ
additions and N ·3·ñ multiplications in F16 (see Section 5.2). Operations performed in BW2 are not
taken into account, because BW2 requires only a negligible amount of time. Therefore, solving the
system using XL corresponds to computing about (2 ·15 380 937/128+15 380 937/256) ·15 380 937 ·
(561 + 25) · 128 ≈ 258.3 additions and about 250.7 multiplications in F16. Since one addition in
F16 requires 4 bit operations, this roughly corresponds to the computation of 4 · 258.3 ≈ 260.3 bit
operations.

7 Source code

The Source code is available at http://www.polycephaly.org/xl/.
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Field Machine m n D Time in [sec] Memory Block Size
BW1 BW2 BW3 total in [GB] m̃, ñ

F2 Cluster 32 32 7 3830 1259 2008 7116 2.4 512, 512
Cluster 33 33 7 6315 2135 3303 11778 3.0 512, 512
Cluster 34 34 7 10301 2742 5439 18515 3.8 512, 512
Cluster 35 35 7 16546 3142 8609 28387 4.6 512, 512
Cluster 36 36 7 26235 5244 15357 46944 5.6 512, 512

F16 NUMA 56 28 6 1866 330 984 3183 3.9 128,128
Cluster 1004 238 548 1795 1.3 256,256
NUMA 58 29 6 2836 373 1506 4719 4.6 128,128
Cluster 1541 316 842 2707 1.6 256,256
NUMA 60 30 7 91228 5346 64688 161287 68.8 256,128
Cluster 53706 3023 38052 94831 10.2 256,128
NUMA 62 31 7 145693 7640 105084 258518 76.7 256,128
Cluster 89059 3505 67864 160489 12.1 256,128
NUMA 64 32 7 232865 8558 163091 404551 100.3 256,128
Cluster 141619 3672 97924 244338 15.3 256,128

F31 NUMA 50 25 6 1729 610 935 3277 0.3 64,64
Cluster 1170 443 648 2265 0.7 128,128
NUMA 52 26 6 2756 888 1483 5129 0.4 64,64
Cluster 1839 656 1013 3513 0.9 128,128
NUMA 54 27 6 4348 1321 2340 8013 0.5 64,64
Cluster 2896 962 1590 5453 1.0 128,128
NUMA 56 28 6 6775 1923 3610 12313 0.6 64,64
Cluster 4497 1397 2458 8358 1.2 128,128
NUMA 58 29 6 10377 2737 5521 18640 0.7 64,64
Cluster 6931 2011 3764 12713 1.5 128,128

Table 3. Statistics of XL with block Wiedemann for F2 and F16 using Thomé’s BW2, and F31 using
Coppersmith’s BW2
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