Nothing Special   »   [go: up one dir, main page]

Rutherfordium: Difference between revisions

Content deleted Content added
Added a hatnote
Tags: Reverted Visual edit Mobile edit Mobile web edit
 
(7 intermediate revisions by 5 users not shown)
Line 1:
{{distinguish|Ruthenium}}
Not to be confused with [[ruthenium]]
 
{{infobox rutherfordium}}
'''Rutherfordium''' is a [[synthetic element|synthetic chemical element]]; it has [[Chemical symbol|symbol]] '''Rf''' and [[atomic number]] 104. It is named after [[physicist]] [[Ernest Rutherford]]. As a synthetic element, it is not found in nature and can only be made in a [[particle accelerator]]. It is [[radioactive]]; the most stable known [[isotope]], <sup>267</sup>Rf, has a [[half-life]] of about 48 minutes.
Line 14 ⟶ 13:
 
===Discovery===
Rutherfordium was reportedly [[discovery of the chemical elements|first detected]] in 1964 at the [[Joint Institute for Nuclear Research]] at [[Dubna]] ([[Soviet Union]] at the time). Researchers there bombarded a [[plutonium]]-242 target with [[neon]]-22 [[ion]]s; a [[spontaneous fission]] activity with half-life 0.3&nbsp;±&nbsp;0.1&nbsp;seconds was detected and assigned to <sup>260</sup>104. Later work found no isotope of element 104 with this half-life, so that this assignment must be considered incorrect.<ref name="93TWG">{{cite journal |title =Discovery of the transfermium elements. Part II: Introduction to discovery profiles. Part III: Discovery profiles of the transfermium elements |date = 1993 |author= Barber, R. C. |author2=Greenwood, N. N. |author3=Hrynkiewicz, A. Z. |author4=Jeannin, Y. P. |author5=Lefort, M. |author6=Sakai, M. |author7=Ulehla, I. |author8=Wapstra, A. P. |author9= Wilkinson, D. H. |journal = Pure and Applied Chemistry| volume = 65 |issue = 8 |pages = 1757–1814 |doi = 10.1351/pac199365081757|s2cid = 195819585 |doi-access= free }}</ref>

In Thus1966–1969, in 1966–1969 the experiment was repeated. This time, the reaction products by gradient thermochromatography after conversion to chlorides by interaction with [[zirconium tetrachloride|ZrCl<sub>4</sub>]]. The team identified [[spontaneous fission]] activity contained within a volatile chloride portraying eka-hafnium properties.<ref name="93TWG">{{cite journal |title =Discovery of the transfermium elements. Part II: Introduction to discovery profiles. Part III: Discovery profiles of the transfermium elements |date = 1993 |author= Barber, R. C. |author2=Greenwood, N. N. |author3=Hrynkiewicz, A. Z. |author4=Jeannin, Y. P. |author5=Lefort, M. |author6=Sakai, M. |author7=Ulehla, I. |author8=Wapstra, A. P. |author9= Wilkinson, D. H. |journal = Pure and Applied Chemistry| volume = 65 |issue = 8 |pages = 1757–1814 |doi = 10.1351/pac199365081757|s2cid = 195819585 |doi-access= free }}</ref>
 
:{{nuclide|plutonium|242}} + {{nuclide|neon|22}} → {{nuclide|rutherfordium|264−''x''}} → {{nuclide|rutherfordium|264−''x''}}Cl<sub>4</sub>
Line 202 ⟶ 203:
|dm=IT
|year=2016
|re=<sup>258</sup>Db({{SubatomicParticle|link=yes|Electron}},{{SubatomicParticle|link=yes|Electron Neutrino}})<ref name="258Db">{{cite journal | lastlast1=Heßberger | firstfirst1=F. P. | last2=Antalic | first2=S. | last3=Ackermann | first3=D. | last4=Andel | first4=B. | last5=Block | first5=M. | last6=Kalaninova | first6=Z. | last7=Kindler | first7=B. | last8=Kojouharov | first8=I. | last9=Laatiaoui | first9=M. | last10=Lommel | first10=B. | last11=Mistry | first11=A. K. | last12=Piot | first12=J. | last13=Vostinar | first13=M. | title=Investigation of electron capture decay of <sup>258</sup>Db and α decay of <sup>258</sup>Rf | journal=The European Physical Journal A | volume=52 | issue=11 | date=2016 | issn=1434-6001 | doi=10.1140/epja/i2016-16328-2}}</ref>
}}
{{isotopes summary/isotope
Line 265 ⟶ 266:
|dm=SF
|year=1978
|re=<sup>244</sup>Pu(<sup>22</sup>Ne,4n), <br /><sup>248</sup>Cm(<sup>18</sup>Ne,4n)<ref>{{cite journal | lastlast1=Somerville | firstfirst1=L. P. | last2=Nurmia | first2=M. J. | last3=Nitschke | first3=J. M. | last4=Ghiorso | first4=A. | last5=Hulet | first5=E. K. | last6=Lougheed | first6=R. W. | title=Spontaneous fission of rutherfordium isotopes | journal=Physical Review C | volume=31 | issue=5 | date=1985-05-01 | issn=0556-2813 | doi=10.1103/PhysRevC.31.1801 | pages=1801–1815| pmid=9952719 | bibcode=1985PhRvC..31.1801S }}</ref>
}}
{{isotopes summary/isotope
Line 280 ⟶ 281:
|sym=Rf
|hl={{sort|00008.0|8 s}}
|ref=<ref>{{cite journal | lastlast1=Dvorak | firstfirst1=J. | last2=Brüchle | first2=W. | last3=Chelnokov | first3=M. | last4=Düllmann | first4=Ch. E. | last5=Dvorakova | first5=Z. | last6=Eberhardt | first6=K. | last7=Jäger | first7=E. | last8=Krücken | first8=R. | last9=Kuznetsov | first9=A. | last10=Nagame | first10=Y. | last11=Nebel | first11=F. | last12=Nishio | first12=K. | last13=Perego | first13=R. | last14=Qin | first14=Z. | last15=Schädel | first15=M. | last16=Schausten | first16=B. | last17=Schimpf | first17=E. | last18=Schuber | first18=R. | last19=Semchenkov | first19=A. | last20=Thörle | first20=P. | last21=Türler | first21=A. | last22=Wegrzecki | first22=M. | last23=Wierczinski | first23=B. | last24=Yakushev | first24=A. | last25=Yeremin | first25=A. | title=Observation of the 3 n Evaporation Channel in the Complete Hot-Fusion Reaction <sup>26</sup>Mg + <sup>248</sup>Cm Leading to the New Superheavy Nuclide <sup>271</sup>Hs | journal=Physical Review Letters | volume=100 | issue=13 | date=2008-04-03 | page=132503 | issn=0031-9007 | doi=10.1103/PhysRevLett.100.132503| pmid=18517941 }}</ref>
|dm=SF
|year=2008
Line 302 ⟶ 303:
|dm=SF
|year=2007?
|re=<sup>266</sup>Db({{SubatomicParticle|link=yes|Electron}},{{SubatomicParticle|link=yes|Electron Neutrino}})?<ref name="Rf266">{{cite journal |doi=10.1103/PhysRevC.76.011601 |date=2007 |issue=1 |page=011601 |volume=76 |journal=Physical Review C |title=Synthesis of the isotope 282113 in the Np237+Ca48 fusion reaction |author=Oganessian, Yu. Ts. | display-authors=1 |bibcode = 2007PhRvC..76a1601O |last2=Utyonkov |first2=V. |last3=Lobanov |first3=Yu. |last4=Abdullin |first4=F. |last5=Polyakov |first5=A. |last6=Sagaidak |first6=R. |last7=Shirokovsky |first7=I. |last8=Tsyganov |first8=Yu. |last9=Voinov |first9=A. }}</ref><ref name="iop">{{cite journal | last=Oganessian | first=Yuri | title=Nuclei in the "Island of Stability" of Superheavy Elements | journal=Journal of Physics: Conference Series | publisher=IOP Publishing | volume=337 | issue=1 | date=8 February 2012 | issn=1742-6596 | doi=10.1088/1742-6596/337/1/012005 | page=012005 | bibcode=2012JPhCS.337a2005O | doi-access=free }}</ref>
}}
{{isotopes summary/isotope
Line 308 ⟶ 309:
|sym=Rf
|hl={{sort|02880.0|48 min}}
|ref=<ref name=PuCa2022"PuCa2022b">{{cite journal |title=Investigation of <sup>48</sup>Ca-induced reactions with <sup>242</sup>Pu and <sup>238</sup>U targets at the JINR Superheavy Element Factory |journal=Physical Review C |volume=106 |number=24612 |year=2022 |first1=Yu. Ts. |last1=Oganessian |first2=V. K. |last2=Utyonkov |first3=D. |last3=Ibadullayev |page=024612 |display-authors=et al. |doi= 10.1103/PhysRevC.106.024612|bibcode=2022PhRvC.106b4612O |osti=1883808 |s2cid=251759318 }}</ref>
|dm=SF
|year=2004
|re=<sup>271</sup>Sg(—,α)<ref name="springerlink1">{{cite book |author=Hofmann, S. |title=The Euroschool Lectures on Physics with Exotic Beams, Vol. III Lecture Notes in Physics |publisher=Springer |date= 2009 |pages=203–252 |doi=10.1007/978-3-540-85839-3_6 |volume=764|chapter=Superheavy Elements |series=Lecture Notes in Physics |isbn=978-3-540-85838-6 }}</ref><!---page 228--->
}}
{{isotopes summary/isotope
Line 337 ⟶ 338:
 
===Stability and half-lives===
Out of isotopes whose half-lives are known, the lighter isotopes usually have shorter half-lives; half-lives of under 50&nbsp;μs for <sup>253</sup>Rf and <sup>254</sup>Rf were observed. <sup>256</sup>Rf, <sup>258</sup>Rf, <sup>260</sup>Rf are more stable at around 10&nbsp;ms, <sup>255</sup>Rf, <sup>257</sup>Rf, <sup>259</sup>Rf, and <sup>262</sup>Rf live between 1 and 5 seconds, and <sup>261</sup>Rf, <sup>265</sup>Rf, and <sup>263</sup>Rf are more stable, at around 1.1, 1.5, and 10 minutes respectively. The heaviest isotopes are the most stable, with <sup>267</sup>Rf having a measured half-life of about 48 minutes.<ref name=PuCa2022"PuCa2022b"/>
 
The lightest isotopes were synthesized by direct fusion between two lighter nuclei and as decay products. The heaviest isotope produced by direct fusion is <sup>262</sup>Rf; heavier isotopes have only been observed as decay products of elements with larger atomic numbers. The heavy isotopes <sup>266</sup>Rf and <sup>268</sup>Rf have also been reported as [[electron capture]] daughters of the [[dubnium]] isotopes <sup>266</sup>Db and <sup>268</sup>Db, but have short half-lives to [[spontaneous fission]]. It seems likely that the same is true for <sup>270</sup>Rf, a possible daughter of <sup>270</sup>Db.<ref name="270Rf">{{cite book|last=Stock|first=Reinhard|title=Encyclopedia of Nuclear Physics and its Applications|url=https://books.google.com/books?id=zVrdAAAAQBAJ&pg=PT305|date=13 September 2013|publisher=John Wiley & Sons|isbn=978-3-527-64926-6|page=305|oclc=867630862}}</ref> These three isotopes remain unconfirmed.
Line 351 ⟶ 352:
Rutherfordium is the first [[transactinide element]] and the second member of the 6d series of transition metals. Calculations on its [[ionization potential]]s, [[atomic radius]], as well as radii, orbital energies, and ground levels of its ionized states are similar to that of [[hafnium]] and very different from that of [[lead]]. Therefore, it was concluded that rutherfordium's basic properties will resemble those of other [[group 4 element]]s, below [[titanium]], [[zirconium]], and hafnium.<ref name="Rf263" /><ref name="Kratz03" /> Some of its properties were determined by gas-phase experiments and aqueous chemistry. The oxidation state +4 is the only stable state for the latter two elements and therefore rutherfordium should also exhibit a stable +4 state.<ref name="Kratz03" /> In addition, rutherfordium is also expected to be able to form a less stable +3 state.<ref name="Haire" /> The [[standard reduction potential]] of the Rf<sup>4+</sup>/Rf couple is predicted to be higher than −1.7&nbsp;V.{{Fricke1975}}
 
Initial predictions of the chemical properties of rutherfordium were based on calculations which indicated that the relativistic effects on the electron shell might be strong enough that the [[p orbital|7p orbitals]] would have a lower energy level than the [[d orbital|6d orbitals]], giving it a [[valence electron]] configuration of 6d<sup>1</sup> 7s<sup>2</sup> 7p<sup>1</sup> or even 7s<sup>2</sup> 7p<sup>2</sup>, therefore making the element behave more like [[lead]] than hafnium. With better calculation methods and experimental studies of the chemical properties of rutherfordium compounds it could be shown that this does not happen and that rutherfordium instead behaves like the rest of the [[group 4 element]]s.<ref name="Haire" /><ref name="Kratz03">{{cite journal|doi=10.1351/pac200375010103 |url=http://stage.iupac.org/originalWeb/publications/pac/2003/pdf/7501x0103.pdf |title=Critical evaluation of the chemical properties of the transactinide elements (IUPAC Technical Report) |date=2003 |last1=Kratz |first1=J. V. |journal=Pure and Applied Chemistry |volume=75 |issue=1 |page=103 |s2cid=5172663 |archive-url=https://web.archive.org/web/20110726195721/http://stage.iupac.org/originalWeb/publications/pac/2003/pdf/7501x0103.pdf |archive-date=2011-07-26 }}</ref> Later it was shown in ab initio calculations with the high level of accuracy<ref name="Eliav1995">{{cite journal |last1=Eliav |first1=E. |last2=Kaldor |first2=U. |last3=Ishikawa |first3=Y. |title=Ground State Electron Configuration of Rutherfordium: Role of Dynamic Correlation |journal=Physical Review Letters |volume=74 |issue=7 |pages=1079–1082 |year=1995 |doi=10.1103/PhysRevLett.74.1079 |pmid=10058929 |bibcode=1995PhRvL..74.1079E }}</ref><ref name="Mosyagin2010">{{cite journal |last1=Mosyagin |first1=N. S. |last2=Tupitsyn |first2=I. I. |last3=Titov |first3=A. V. |title=Precision Calculation of the Low-Lying Excited States of the Rf Atom |journal=Radiochemistry |volume=52 |issue=4 |pages=394–398 |year=2010 |doi=10.1134/S1066362210040120 |bibcode=2010Radch..52..394M |s2cid=120721050 }}</ref><ref name="Dzuba2014">{{cite journal |last1=Dzuba |first1=V. A. |last2=Safronova |first2=M. S. |last3=Safronova |first3=U. I. |title=Atomic properties of superheavy elements No, Lr, and Rf |journal=Physical Review A |volume=90 |issue=1 |page=012504 |year=2014 |doi=10.1103/PhysRevA.90.012504 |arxiv=1406.0262 |bibcode=2014PhRvA..90a2504D |s2cid=74871880 }}</ref> that the Rf atom has the ground state with the 6d<sup>2</sup> 7s<sup>2</sup> valence configuration and the low-lying excited 6d<sup>1</sup> 7s<sup>2</sup> 7p<sup>1</sup> state with the excitation energy of only 0.3–0.5 eV.
 
In an analogous manner to zirconium and hafnium, rutherfordium is projected to form a very stable, [[refractory]] oxide, RfO<sub>2</sub>. It reacts with halogens to form tetrahalides, RfX<sub>4</sub>, which hydrolyze on contact with water to form oxyhalides RfOX<sub>2</sub>. The tetrahalides are volatile solids existing as monomeric tetrahedral molecules in the vapor phase.<ref name="Kratz03" />