Nothing Special   »   [go: up one dir, main page]

Photodissociation: Difference between revisions

Content deleted Content added
m Reworded short description for clarity and added references. Added reference to photosynthesis section.
Citation bot (talk | contribs)
Add: bibcode, pmid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | Category:Astrophysics | #UCB_Category 181/253
Line 3:
'''Photodissociation''', '''photolysis''', '''photodecomposition''', or '''photofragmentation''' is a [[chemical reaction]] in which [[molecule]]s of a [[chemical compound]] are broken down by absorption of light or [[photon]]s. It is defined as the interaction of one or more photons with one target molecule that dissociates into two fragments.<ref>{{Cite web |title=Photochemical reaction - Photosensitization, Light Activation, Photoproducts {{!}} Britannica |url=https://www.britannica.com/science/photochemical-reaction/Photosensitization |access-date=2024-05-24 |website=www.britannica.com |language=en}}</ref>
 
Here, “light” is broadly defined as radiation spanning the vacuum ultraviolet (VUV), [[Ultraviolet|ultraviolet (UV)]], [[Visible spectrum|visible]], and [[Infrared|infrared (IR)]] regions of the [[electromagnetic spectrum]]. To break [[Covalent bond|covalent bonds]], [[photon]] energies corresponding to visible, UV, or VUV light are typically required, whereas IR photons may be sufficiently energetic to detach [[Ligand|ligands]] from [[Coordination complex|coordination complexes]] or to fragment supramolecular complexes.<ref>{{Cite journal |lastlast1=Vallance |firstfirst1=Claire |last2=Orr-Ewing |first2=Andrew J. |date=2023-07-20 |title=Virtual Issue on Photodissociation: From Fundamental Dynamics and Spectroscopy to Photochemistry in Planetary Atmospheres and in Space |url=https://pubs.acs.org/doi/10.1021/acs.jpca.3c03975 |journal=The Journal of Physical Chemistry A |language=en |volume=127 |issue=28 |pages=5767–5771 |doi=10.1021/acs.jpca.3c03975 |pmid=37469270 |bibcode=2023JPCA..127.5767V |issn=1089-5639}}</ref>
 
==Photolysis in photosynthesis==
Line 27:
====Quantum models====
 
In 2007 a quantum model was proposed by [[Graham Fleming]] and his co-workers which includes the possibility that photosynthetic energy transfer might involve quantum oscillations, explaining its unusually high [[photosynthetic efficiency|efficiency]].<ref name="QB">{{Cite journal |lastlast1=Engel |firstfirst1=Gregory S. |last2=Calhoun |first2=Tessa R. |last3=Read |first3=Elizabeth L. |last4=Ahn |first4=Tae-Kyu |last5=Mančal |first5=Tomáš |last6=Cheng |first6=Yuan-Chung |last7=Blankenship |first7=Robert E. |author-link7=Robert E. Blankenship |last8=Fleming |first8=Graham R. |date=2007-04-12 |title=Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems |url=https://www.nature.com/articles/nature05678 |journal=Nature |language=en |volume=446 |issue=7137 |pages=782–786 |bibcode=2007Natur.446..782E |doi=10.1038/nature05678 |issn=0028-0836 |pmid=17429397 |s2cid=13865546}}</ref>
 
According to Fleming<ref name="QBC">{{Cite web |date=2007-04-12 |title=Quantum secrets of photosynthesis revealed |url=https://phys.org/news/2007-04-quantum-secrets-photosynthesis-revealed.html |access-date= |website=phys.org |language=en}}</ref> there is direct evidence that remarkably long-lived wavelike electronic quantum coherence plays an important part in energy transfer processes during photosynthesis, which can explain the extreme efficiency of the energy transfer because it enables the system to sample all the potential energy pathways, with low loss, and choose the most efficient one. This claim has, however, since been proven wrong in several publications.<ref>{{cite journal |author=R. Tempelaar |author2=T. L. C. Jansen |author3=J. Knoester |title=Vibrational Beatings Conceal Evidence of Electronic Coherence in the FMO Light-Harvesting Complex |journal= J. Phys. Chem. B |volume=118 |issue=45 |pages=12865–12872 |date=2014 |doi=10.1021/jp510074q |pmid=25321492}}</ref><ref>{{cite journal |author=N. Christenson |author2=H. F. Kauffmann |author3=T. Pullerits |author4=T. Mancal |title=Origin of Long-Lived Coherences in Light-Harvesting Complexes |journal= J. Phys. Chem. B |volume=116 |pages=7449–7454 |date=2012 |issue=25 |doi=10.1021/jp304649c |arxiv=1201.6325 |pmid=22642682 |pmc=3789255}}</ref><ref>{{cite journal |author=E. Thyrhaug |author2=K. Zidek |author3=J. Dostal |author4=D. Bina |author5=D. Zigmantas |title=Exciton Structure and Energy Transfer in the Fenna−Matthews− Olson Complex |journal= J. Phys. Chem. Lett. |volume=7 |issue=9 |pages=1653–1660 |date=2016 |doi=10.1021/acs.jpclett.6b00534 |pmid=27082631|s2cid=26355154 |url=https://lup.lub.lu.se/search/publication/b1c8070b-60cf-4e41-8895-ea13faf95777}}</ref><ref>{{cite journal |author=A. G. Dijkstra |author2=Y. Tanimura |title=The role of the environment time scale in light-harvesting efficiency and coherent oscillations |journal= New J. Phys. |volume=14 |issue=7 |pages=073027 |date=2012 |doi=10.1088/1367-2630/14/7/073027|bibcode=2012NJPh...14g3027D|doi-access=free}}</ref><ref>{{cite journal |author=D. M. Monahan |author2=L. Whaley-Mayda |author3=A. Ishizaki |author4=G. R. Fleming |title=Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes |journal= J. Chem. Phys. |volume=143 |issue=6 |pages=065101 |date=2015 |doi=10.1063/1.4928068|pmid=26277167 |bibcode=2015JChPh.143f5101M |osti=1407273}}</ref>