Content deleted Content added
m Open access bot: doi updated in citation with #oabot. |
m →Periodically-poled lithium niobate (PPLN): MOS:HYPHEN, MOS:PAGERANGE, MOS:MATH#PUNC, punct., fmt. |
||
Line 96:
In the past few years lithium niobate is finding applications as a kind of electrostatic tweezers, an approach known as optoelectronic tweezers as the effect requires light excitation to take place.<ref name="Carrascosa M 2015">{{cite journal | last1=Carrascosa | first1=M. | last2=García-Cabañes | first2=A. | last3=Jubera | first3=M. | last4=Ramiro | first4=J. B. | last5=Agulló-López | first5=F. | title=LiNbO<sub>3</sub>: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects | journal=Applied Physics Reviews | publisher=AIP Publishing | volume=2 | issue=4 | year=2015 | issn=1931-9401 | doi=10.1063/1.4929374 | page=040605| bibcode=2015ApPRv...2d0605C | hdl=10486/669584 | hdl-access=free }}</ref><ref name="García-Cabañes A 2018">{{cite journal | last1=García-Cabañes | first1=Angel | last2=Blázquez-Castro | first2=Alfonso | last3=Arizmendi | first3=Luis | last4=Agulló-López | first4=Fernando | last5=Carrascosa | first5=Mercedes | title=Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate | journal=Crystals | publisher=MDPI AG | volume=8 | issue=2 | date=2018-01-30 | issn=2073-4352 | doi=10.3390/cryst8020065 | page=65| doi-access=free }}</ref> This effect allows for fine manipulation of micrometer-scale particles with high flexibility since the tweezing action is constrained to the illuminated area. The effect is based on the very high electric fields generated during light exposure (1–100 kV/cm) within the illuminated spot. These intense fields are also finding applications in biophysics and biotechnology, as they can influence living organisms in a variety of ways.<ref name="Blázquez-Castro A 2018">{{cite journal | last1=Blázquez-Castro | first1=A. | last2=García-Cabañes | first2=A. | last3=Carrascosa | first3=M. | title=Biological applications of ferroelectric materials | journal=Applied Physics Reviews | publisher=AIP Publishing | volume=5 | issue=4 | year=2018 | issn=1931-9401 | doi=10.1063/1.5044472 | page=041101| arxiv=2109.00429 | bibcode=2018ApPRv...5d1101B | s2cid=139511670 }}</ref> For example, iron-doped lithium niobate excited with visible light has been shown to produce cell death in tumoral cell cultures.<ref name="Blázquez-Castro A 2011">{{cite journal | last1=Blázquez-Castro | first1=Alfonso | last2=Stockert | first2=Juan C. | last3=López-Arias | first3=Begoña | last4=Juarranz | first4=Angeles | last5=Agulló-López | first5=Fernando | last6=García-Cabañes | first6=Angel | last7=Carrascosa | first7=Mercedes | title=Tumour cell death induced by the bulk photovoltaic effect of LiNbO<sub>3</sub>:Fe under visible light irradiation | journal=Photochemical & Photobiological Sciences | publisher=Springer Science and Business Media LLC | volume=10 | issue=6 | year=2011 | pages=956–963 | issn=1474-905X | doi=10.1039/c0pp00336k | pmid=21336376 | doi-access=free }}</ref>
==Periodically
'''Periodically poled lithium niobate''' ('''PPLN''') is a domain-engineered lithium niobate crystal, used mainly for achieving [[quasi-phase-matching]] in [[nonlinear optics]]. The [[ferroelectric]] domains point alternatively to the ''+c'' and the ''−c'' direction, with a period of typically between 5 and 35
Periodic poling uses the largest value of lithium niobate's nonlinear tensor, ''d''<sub>33</sub> = 27
Other materials used for [[periodic poling]] are wide
The periodic
However, due to its low photorefractive damage threshold, PPLN only finds limited applications
===Sellmeier equations===
The [[Sellmeier equation]]s for the extraordinary index are used to find the poling period and approximate temperature for quasi-phase
: <math>
n^2_e \approx 5.35583 + 4.629 \times 10^{-7} f
+ \frac{0.100473 + 3.862 \times 10^{-8} f
+ \frac{100 + 2.657 \times 10^{-5} f
- 1.5334 \times 10^{-2} \lambda^2,
valid from 20 to 250 °C for wavelengths from 0.4 to 5
: <math>
n^2_e \approx 5.39121 + 4.968 \times 10^{-7} f
+ \frac{0.100473 + 3.862 \times 10^{-8} f
+ \frac{100 + 2.657 \times 10^{-5} f
- (1.544 \times 10^{-2} + 9.62119 \times 10^{-10} \lambda) \lambda^2, which is valid for ''T'' = 25 to 180 °C, for wavelengths λ between 2.8 and 4.8 micrometers.
Line 131 ⟶ 132:
More generally for ordinary and extraordinary index for MgO-doped {{chem2|LiNbO3}}:
: <math>{
n^2 \approx a_1 + b_1 f
+ \frac{a_2 + b_2 f
+ \frac{a_4 + b_4 f
- a_6 \lambda^2,
}</math>
with:
Line 165 ⟶ 166:
| ''b''<sub>4</sub> || 1.516×10<sup>−4</sup> || −2.188×10<sup>−6</sup> || 1.096×10<sup>−4</sup>
|}
for congruent {{chem2|LiNbO3}} (CLN) and stochiometric {{chem2|LiNbO3}} (SLN).<ref name=gayer>{{cite journal |journal
==See also==
|