Content deleted Content added
Citation bot (talk | contribs) Alter: template type. Add: pages, issue, volume, pmid, year, journal, authors 1-9. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | Category:Lithium compounds | #UCB_Category 1/107 |
→Applications: uses in pyroelectric infrared (IR) detectors |
||
(22 intermediate revisions by 12 users not shown) | |||
Line 3:
| Watchedfields = changed
| verifiedrevid = 476994790
| ImageFile =
| ImageFile1 = File:LiNbO3.png
| ImageSize1 =
Line 29 ⟶ 28:
| MolarMass = 147.846 g/mol
| Appearance = colorless solid
| Density = 4.
| MeltingPtC =
| MeltingPt_ref = <ref name=
| BoilingPt =
| Solubility = None
| SolubleOther =
| RefractIndex = n<sub>o</sub> 2.
| BandGap = 3.77 eV <ref name="Zanatta">{{cite journal |last1=Zanatta |first1=A.R. | title= The optical bandgap of lithium niobate (LiNbO3) and its dependence with temperature |journal=Results Phys. |date=August 2022 |volume=39 |pages=105736–3pp |doi=10.1016/j.rinp.2022.105736 |s2cid=249688492 |doi-access=free }}</ref>
}}
|Section3={{Chembox Structure
| Structure_ref=<ref>{{cite journal|doi=10.1063/1.354572|title=The defect structure of congruently melting lithium niobate |year=1993 |last1=Wilkinson |first1=A. P. |last2=Cheetham |first2=A. K. |last3=Jarman |first3=R. H. |journal=Journal of Applied Physics |volume=74 |issue=5 |pages=3080–3083 |bibcode=1993JAP....74.3080W }}</ref>
| CrystalStruct = [[
| SpaceGroup = R3c, No. 161
| PointGroup = 3m (C<sub>3v</sub>)
| LattConst_a = 0.51501 nm
| LattConst_b = 0.51501 nm
| LattConst_c = 0.54952 nm
| LattConst_alpha = 62.057
| LattConst_beta = 62.057
| LattConst_gamma = 60
| UnitCellFormulas = 6
}}
|Section4={{Chembox Thermochemistry
Line 59 ⟶ 64:
| NFPA-S =
| FlashPt =
| LD50 =
}}
|Section8={{Chembox Related
Line 68 ⟶ 73:
}}
'''Lithium niobate''' ({{chem2|auto=1|LiNbO3}}) is a
==Properties==
Lithium niobate is a colorless solid, and it is insoluble in water. It has a [[trigonal]] [[crystal system]], which lacks [[inversion symmetry]] and displays [[ferroelectricity]], the [[Pockels effect]], the [[piezoelectric]] effect, [[photoelasticity]] and [[nonlinear optics|nonlinear optical]] polarizability. Lithium niobate has negative uniaxial [[birefringence]] which depends slightly on the [[stoichiometry]] of the crystal and on temperature. It is transparent for wavelengths between 350 and 5200 [[nanometer]]s.
Lithium niobate can be [[Dopant|doped]]
==Growth==
[[File:Lithium Niobate Wafer.jpg|175px|thumb|A Z-cut, single
[[Single crystal]]s of lithium niobate can be grown using the [[Czochralski process]].<ref>{{cite book|title = Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching|first = Tatyana|last = Volk|author2=Wohlecke, Manfred |publisher = Springer|year = 2008|isbn = 978-3-540-70765-3|doi=10.1007/978-3-540-70766-0|pages=1–9}}</ref>
▲[[File:Lithium Niobate Wafer.jpg|175px|thumb|A Z-cut, single crystal lithium niobate wafer|left]]
After a crystal is grown, it is sliced into wafers of different orientation. Common orientations are Z-cut, X-cut, Y-cut, and cuts with rotated angles of the previous axes.<ref>{{cite book|last=Wong|first=K. K.|title=Properties of Lithium Niobate|year=2002|publisher=INSPEC|location=London, United Kingdom|isbn=0-85296-799-3|pages=8}}</ref>
=== Thin
Thin-film lithium niobate (e.g. for [[Waveguide (optics)#Two-dimensional waveguides|optical wave
==Nanoparticles==
Line 87 ⟶ 93:
==Applications==
Lithium niobate is used extensively in the telecommunications market, e.g. in [[mobile telephone]]s and [[optical modulator]]s.<ref name=Toney-2015>{{cite book|title = Lithium Niobate Photonics|first = James|last = Toney |publisher = Artech House|year = 2015|isbn = 978-1-60807-923-0}}</ref> Due to its large electro-mechanical coupling, it is the material of choice for [[surface acoustic wave|surface acoustic wave(SAW)]] devices.<ref>{{cite journal |last1=Gruenke |first1=Rachel |last2=Hitchcock |first2=Oliver |year=2024 |title=Surface modification and coherence in lithium niobate SAW resonators |journal=Scientific Reports |volume=14 |page=6663 |doi=10.1038/s41598-024-57168-x}}</ref> For some uses it can be replaced by [[lithium tantalate
In the past few years lithium niobate is finding applications as a kind of electrostatic tweezers, an approach known as optoelectronic tweezers as the effect requires light excitation to take place.<ref name="Carrascosa M 2015">{{cite journal | last1=Carrascosa | first1=M. | last2=García-Cabañes | first2=A. | last3=Jubera | first3=M. | last4=Ramiro | first4=J. B. | last5=Agulló-López | first5=F. | title=LiNbO<sub>3</sub>: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects | journal=Applied Physics Reviews | publisher=AIP Publishing | volume=2 | issue=4 | year=2015 | issn=1931-9401 | doi=10.1063/1.4929374 | page=040605| bibcode=2015ApPRv...2d0605C | hdl=10486/669584 | hdl-access=free }}</ref><ref name="García-Cabañes A 2018">{{cite journal | last1=García-Cabañes | first1=Angel | last2=Blázquez-Castro | first2=Alfonso | last3=Arizmendi | first3=Luis | last4=Agulló-López | first4=Fernando | last5=Carrascosa | first5=Mercedes | title=Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate | journal=Crystals | publisher=MDPI AG | volume=8 | issue=2 | date=2018-01-30 | issn=2073-4352 | doi=10.3390/cryst8020065 | page=65| doi-access=free | hdl=10486/681685 | hdl-access=free }}</ref> This effect allows for fine manipulation of micrometer-scale particles with high flexibility since the tweezing action is constrained to the illuminated area. The effect is based on the very high electric fields generated during light exposure (1–100 kV/cm) within the illuminated spot. These intense fields are also finding applications in biophysics and biotechnology, as they can influence living organisms in a variety of ways.<ref name="Blázquez-Castro A 2018">{{cite journal | last1=Blázquez-Castro | first1=A. | last2=García-Cabañes | first2=A. | last3=Carrascosa | first3=M. | title=Biological applications of ferroelectric materials | journal=Applied Physics Reviews | publisher=AIP Publishing | volume=5 | issue=4 | year=2018 | issn=1931-9401 | doi=10.1063/1.5044472 | page=041101| arxiv=2109.00429 | bibcode=2018ApPRv...5d1101B | s2cid=139511670 }}</ref> For example, iron-doped lithium niobate excited with visible light has been shown to produce cell death in tumoral cell cultures.<ref name="Blázquez-Castro A 2011">{{cite journal | last1=Blázquez-Castro | first1=Alfonso | last2=Stockert | first2=Juan C. | last3=López-Arias | first3=Begoña | last4=Juarranz | first4=Angeles | last5=Agulló-López | first5=Fernando | last6=García-Cabañes | first6=Angel | last7=Carrascosa | first7=Mercedes | title=Tumour cell death induced by the bulk photovoltaic effect of LiNbO<sub>3</sub>:Fe under visible light irradiation | journal=Photochemical & Photobiological Sciences | publisher=Springer Science and Business Media LLC | volume=10 | issue=6 | year=2011 | pages=956–963 | issn=1474-905X | doi=10.1039/c0pp00336k | pmid=21336376 | doi-access=free }}</ref>
==Periodically
'''Periodically poled lithium niobate''' ('''PPLN''') is a domain-engineered lithium niobate crystal, used mainly for achieving [[quasi-phase-matching]] in [[nonlinear optics]]. The [[ferroelectric]] domains point alternatively to the ''+c'' and the ''−c'' direction, with a period of typically between 5 and 35
Periodic poling uses the largest value of lithium niobate's nonlinear tensor, ''d''<sub>33</sub> = 27
Other materials used for [[periodic poling]] are wide
The periodic
However, due to its low photorefractive damage threshold, PPLN only finds limited applications
===Sellmeier equations===
The [[Sellmeier equation]]s for the extraordinary index are used to find the poling period and approximate temperature for quasi-phase
: <math>
n^2_e \approx 5.35583 + 4.629 \times 10^{-7} f
+ \frac{0.100473 + 3.862 \times 10^{-8} f
+ \frac{100 + 2.657 \times 10^{-5} f
- 1.5334 \times 10^{-2} \lambda^2,
valid from 20 to 250 °C for wavelengths from 0.4 to 5
: <math>
n^2_e \approx 5.39121 + 4.968 \times 10^{-7} f
+ \frac{0.100473 + 3.862 \times 10^{-8} f
+ \frac{100 + 2.657 \times 10^{-5} f
- (1.544 \times 10^{-2} + 9.62119 \times 10^{-10} \lambda) \lambda^2, which is valid for ''T'' = 25 to 180 °C, for wavelengths λ between 2.8 and 4.8 micrometers.
Line 127 ⟶ 133:
More generally for ordinary and extraordinary index for MgO-doped {{chem2|LiNbO3}}:
: <math>{
n^2 \approx a_1 + b_1 f
+ \frac{a_2 + b_2 f
+ \frac{a_4 + b_4 f
- a_6 \lambda^2,
}</math>
with:
Line 161 ⟶ 167:
| ''b''<sub>4</sub> || 1.516×10<sup>−4</sup> || −2.188×10<sup>−6</sup> || 1.096×10<sup>−4</sup>
|}
for congruent {{chem2|LiNbO3}} (CLN) and stochiometric {{chem2|LiNbO3}} (SLN).<ref name=gayer>{{cite journal
==See also==
Line 179 ⟶ 185:
{{reflist|30em}}
==
*{{cite book |ref=Haynes| editor= Haynes, William M. | date = 2016| title = [[CRC Handbook of Chemistry and Physics]] | edition = 97th | publisher = [[CRC Press]] | isbn = 9781498754293 }}
==External links==
Line 188 ⟶ 194:
{{Niobium compounds}}
[[Category:Lithium
[[Category:Niobates]]
[[Category:Ferroelectric materials]]
|