Content deleted Content added
No edit summary Tag: Reverted |
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5) (Hey man im josh - 20898 |
||
(32 intermediate revisions by 19 users not shown) | |||
Line 1:
{{
{{Good article}}
{{Speciesbox
Line 12:
}}
The '''emerald ash borer''' ('''''Agrilus planipennis'''''), also known by the acronym '''EAB''', is a green
==History==
Line 19:
==Identification==
Adult beetles are typically bright metallic green and about {{cvt|8.5|mm|in|sp=us}} long and {{cvt|1.6|mm|in|sp=us}} wide. [[Elytra]] are typically a darker green, but can also have copper hues. Emerald ash borer is the only North American species of ''[[Agrilus]]'' with a bright red upper abdomen when viewed with the wings and elytra spread. The species also has a small spine found at the tip of the abdomen and [[serrate]] antennae that begin at the fourth antennal segment.<ref name="EABID">{{Cite web |last=Parsons |first=Gary L. |title=Emerald ash borer: A guide to identification and comparison to similar species |publisher=USDA |date=November 2008 |url=http://www.emeraldashborer.info/files/eab_id_guide.pdf |access-date=August 15, 2014 |archive-date=September 24, 2015 |archive-url=https://web.archive.org/web/20150924000113/http://www.emeraldashborer.info/files/eab_id_guide.pdf |url-status=dead }}</ref> They leave tracks in the trees they damage below the bark that are sometimes visible.<ref>{{Cite web |url=https://www.bioadvanced.com/articles/controlling-emerald-ash-borers |title=Controlling Emerald Ash Borers to Protect Ash Trees | Bioadvanced}}</ref> Adult beetles of other species can often be misidentified by the public.<ref>{{cite web |title=Native Borers and Emerald Ash Borer Look-alikes |url=http://www.emeraldashborer.info/documents/E-2939.pdf |publisher=Michigan State University Extension |access-date=12 March 2017}}</ref><ref>{{Cite journal |last1=Volkovitsh |first1=Mark G. |last2=Orlova-Bienkowskaja |first2=Marina J. |last3=Kovalev |first3=Alexey V. |last4=Bieńkowski |first4=Andrzej O. |title=An illustrated guide to distinguish emerald ash borer (''Agrilus planipennis'') from its congeners in Europe |journal=Forestry: An International Journal of Forest Research |language=en |doi=10.1093/forestry/cpz024 |year=2019 |doi-access=
==Life cycle==
The emerald ash borer life cycle can occur over one or two years depending on the time of year of [[oviparity|oviposition]], the health of the tree, and temperature.<ref name=" USDA-APHIS-ARS-FS">{{Cite web |last1=Gould |first1=Juli S. |last2=Bauer |first2=Leah S. |last3=Lelito |first3=Jonathan |last4=Duan |first4=Jian |title=Emerald Ash Borer Biological Control Release and Recovery Guidelines |publisher=USDA-APHIS-ARS-FS |date=May 2013 |url=http://www.aphis.usda.gov/plant_health/plant_pest_info/emerald_ash_b/downloads/EAB-FieldRelease-Guidelines.pdf |access-date=2012-04-27 |archive-date=2019-07-01 |archive-url=https://web.archive.org/web/20190701070750/https://www.aphis.usda.gov/plant_health/plant_pest_info/emerald_ash_b/downloads/EAB-FieldRelease-Guidelines.pdf |url-status=dead}}</ref>
After 400–500 accumulated [[growing degree day|degree-days]] above {{cvt|10|°C|°F}}, adults begin to emerge from trees in late spring, and peak emergence occurs around 1,000 degree-days
Eggs are deposited between bark crevices, flakes, or cracks and hatch about two weeks later. Eggs are approximately {{cvt|0.6|to|1.0|mm|in|2|sp=us}} in diameter, and are initially white, but later turn reddish-brown if fertile.<ref name="Herms et al. 2013"/><ref name=" USDA-APHIS-ARS-FS"/> After hatching, larvae chew through the bark to the inner [[phloem]], [[cambium]], and outer [[xylem]] where they feed and develop.<ref name="Poland">{{Cite journal |last1=Poland |first1=Therese. M |last2=Chen |first2=Tigen |last3=Jennifer |first3=Koch |last4=Pureswaran |first4=Deepa |title=Review of the emerald ash borer (Coleoptera: Buprestidae), life history, mating behaviours, host plant selection, and host resistance |journal=The Canadian Entomologist |date=December 2014 |volume=147 |issue=3 |pages=252–262 |url=http://www.fs.fed.us/nrs/pubs/jrnl/2015/nrs_2015_poland_001.pdf |doi=10.4039/tce.2015.4 |s2cid=29265154 |archive-url=https://web.archive.org/web/20151223052652/http://www.fs.fed.us/nrs/pubs/jrnl/2015/nrs_2015_poland_001.pdf |archive-date=23 December 2015}}</ref> Emerald ash borer has four larval [[instar]]s. By feeding, larvae create long serpentine galleries. Fully mature fourth-instar larvae are {{cvt|26|to|32|mm|in|sp=us}} long.<ref name="USDA-APHIS-ARS-FS"/> In fall, mature fourth-instars excavate chambers about {{cvt|1.25|cm|in|sp=us}} into the sapwood or outer bark where they fold into a J-shape.<ref name="Poland"/> These J-shaped larvae shorten into prepupae and develop into pupae and adults the following spring. To exit the tree, adults chew holes from their chamber through the bark, which leaves a characteristic D-shaped exit hole. Immature larvae can [[overwintering|overwinter]] in their larval gallery, but can require an additional summer of feeding before overwintering again and emerging as adults the following spring.<ref name="USDA-APHIS-ARS-FS"/> This two-year life cycle is more common in cool climates, such as [[European Russia]].<ref name="Valenta2016"/>
<gallery mode="packed" heights="100px">
Line 38:
==Range==
[[File:USDA Asian EAB map.png|thumb|upright=1.2|Native range of emerald ash borer in eastern Asia and introduced range in European Russia as of 2013]]
[[File:
The native range of the emerald ash borer is [[temperate]] north-eastern Asia, which includes Russia, Mongolia, northern China, Japan, and Korea.<ref name=issg>{{cite web |title=''Agrilus planipennis'' (insect) |work=Global Invasive Species Database |publisher=ISSG-IUCN |date=August 14, 2006 |url=http://www.issg.org/database/species/ecology.asp?si=722&fr=1&sts=sss&lang=EN |access-date=August 28, 2013 |archive-date=March 4, 2016 |archive-url=https://web.archive.org/web/20160304060927/http://www.issg.org/database/species/ecology.asp?si=722&fr=1&sts=sss&lang=EN |url-status=dead }}</ref><ref name="Valenta2016"/>
The beetle is invasive in North America where it has a core population in [[Michigan]] and surrounding states and provinces. Populations are more scattered outside the core area, and the edges of its known distribution range north to [[Ontario]], south to northern [[Louisiana]], west to [[
== Host plants==
In its native range, emerald ash borer is only a nuisance pest on native trees, as population densities typically do not reach levels lethal to healthy trees.<ref name="Wang et al. 2010">{{cite journal |last=Wang |first=Xiao-Yi |title=The biology and ecology of the emerald ash borer, ''Agrilus planipennis'', in China |journal=Journal of Insect Science |date=2010 |volume=10 |issue=128 |page=128 |url=|display-authors=etal |doi=10.1673/031.010.12801 |pmid=20879922 |pmc=3016904}}</ref> In China, it infests native ''[[Fraxinus chinensis]]'', [[Fraxinus mandshurica|''F. mandshurica'']], and [[Fraxinus rhynchophylla|''F. rhynchophylla'']]; in Japan it also infests [[Fraxinus japonica|''F. japonica'']] and [[Fraxinus lanuginosa|''F. lanuginosa'']].<ref name="Valenta2016"/>
Emerald ash borer primarily infest and can cause significant damage to [[ash trees|ash species]] including green ash (''[[Fraxinus pennsylvanica|F. pennsylvanica]]''), black ash (''[[Fraxinus nigra|F. nigra]]''), white ash (''[[Fraxinus americana|F. americana]]''), and blue ash (''[[Fraxinus quadrangulata|F. quadrangulata]]'') in North America.<ref name="Poland and McCullough 2006">{{cite journal |last1=Poland |first1=T. |last2=McCullough |first2=D. |title=Emerald ash borer: invasion of the urban forest and the threat to North America's ash resource |journal=Journal of Forestry |volume=104 |pages=118–124 |date=2006 |url=http://www.nrs.fs.fed.us/pubs/jrnl/2006/nc_2006_Poland_003.pdf |archive-url=https://web.archive.org/web/20111017034200/http://www.nrs.fs.fed.us/pubs/jrnl/2006/nc_2006_Poland_003.pdf|archive-date=17 October 2011}}</ref> In Europe, ''[[Fraxinus excelsior|F. excelsior]]'' is the main ash species colonized, which is moderately resistant to emerald ash borer infestation.<ref name="Valenta2016"/><ref>{{cite journal | last1=Showalter
Adults prefer to lay eggs on open grown or stressed ash but readily lay eggs on healthy trees amongst other tree species. Ashes that grow in pure stands, whether naturally occurring or in landscaping, are more prone to attack than isolated trees or ones located in mixed forest stands. Ashes used in landscaping also tend to be subjected to higher amounts of environmental stresses including compacted soil, lack of moisture, heating effects from [[Urban heat island|urban islands]], road salt, and pollution, which may also reduce their resistance to the borer. Furthermore, most ashes used in landscaping were produced from a handful of cultivars, resulting in low [[genetic diversity]].<ref name="Poland"/> Young trees with bark between {{cvt|1.5|mm|in|sp=us}} to {{cvt|5|mm|in|sp=us}} are preferred.<ref name="Valenta2016"/> Both males and females use leaf volatiles and [[sesquiterpenes]] in the bark to locate hosts.<ref name="Poland"/> Damage occurs in infested trees by larval feeding. The serpentine feeding galleries of the larvae disrupt the flow of nutrients and water, effectively [[girdling]], thus killing the tree, as it is no longer able to transport sufficient water and nutrients to the leaves to survive. Girdled ashes will often attempt to regenerate through stump sprouting, and there is evidence that stressed trees may also generate higher than normal seed crops as an emergency measure.<ref name="Herms et al. 2013"/>
Line 55:
[[File:Swamp Ash, EAB stripped bark.jpg|thumb|upright|A [[swamp ash]] with bark stripped by woodpeckers feeding on emerald ash borers]]
Outside its native range, emerald ash borer is an [[invasive species]] that is highly destructive to ash trees in its [[Introduced species|introduced]] range.<ref
Without factors that would normally suppress emerald ash borer populations in its native range (e.g., resistant trees, predators, and [[parasitoid wasp]]s), populations can quickly rise to damaging levels.<ref name="Herms et al. 2013"/> After initial infestation, all ash trees are expected to die in an area within 10 years without control measures.<ref name="Herms et al. 2013" /> Every North American ash species has susceptibility to emerald ash borer, as North American species planted in China also have high mortality from infestations, but some Asian ash species are resistant, including ''[[Fraxinus baroniana|F. baroniana]], F. chinensis, [[Fraxinus floribunda|F. floribunda]], F. mandshurica'', and ''[[Fraxinus platypoda|F. platypoda]]''.<ref name="Kelly2020" >{{cite journal |title=Convergent molecular evolution among ash species resistant to the emerald ash borer |year=2020 |last1=Kelly |first1=Laura J. |last2=Plumb |first2=William J. |last3=Carey |first3=David W. |last4=Mason |first4=Mary E. |last5=Cooper |first5=Endymion D. |last6=Crowther |first6=William |last7=Whittemore |first7=Alan T. |last8=Rossiter |first8=Stephen J. |last9=Koch |first9=Jennifer L. |last10=Buggs |first10=Richard J. A. |journal=Nature Ecology & Evolution |volume=4 |issue=8 |pages=1116–1128 |doi=10.1038/s41559-020-1209-3 |pmid=32451426 |pmc=7610378 }}</ref><ref>{{cite journal |last=Liu |first=Houping |title=Exploratory survey for the emerald ash borer, ''Agrilus planipennis'' (Coleoptera: Buprestidae), and its natural enemies in China |journal=Great Lakes Entomologist |date=2003 |volume=36 |pages=191–204 |url=https://www.nrs.fs.fed.us/pubs/jrnl/2003/nc_2003_liu_001.pdf |access-date=28 May 2014 |display-authors=etal |archive-date=24 January 2022 |archive-url=https://web.archive.org/web/20220124163133/https://www.nrs.fs.fed.us/pubs/jrnl/2003/nc_2003_liu_001.pdf |url-status=dead }}</ref><ref>{{cite journal |last1=Rebek |first1=E. J. |last2=Herms |first2=D. A. |last3=Smitley |first3=D. R.|display-authors=etal |date=2013 |title=Interspecific variation in resistance to Emerald Ash Borer (Coleoptera: Buprestidae) among North American and Asian ash (''Fraxinus'' spp.) |url=http://www.oardc.ohio-state.edu/hermslab/images/Rebek_et_al_2008_Plant_Insect_Interact_Variation_in_Resistance_of_ash_to_EAB.pdf |journal=Environmental Entomology |volume=37 |issue=1 |pages=242–246 |doi=10.1603/0046-225X(2008)37[242:IVIRTE]2.0.CO;2 |pmid=18348816 |archive-url=https://web.archive.org/web/20160304124315/http://www.oardc.ohio-state.edu/hermslab/images/Rebek_et_al_2008_Plant_Insect_Interact_Variation_in_Resistance_of_ash_to_EAB.pdf |archive-date=March 4, 2016 |doi-access=free}}</ref>
[[Fraxinus pennsylvanica|Green ash]] and [[Fraxinus nigra|black ash]] trees are preferred by emerald ash borer. [[Fraxinus americana|White ash]] is also killed rapidly but usually only after all green and black ash trees are eliminated. [[Fraxinus quadrangulata|Blue ash]] is known to exhibit a higher degree of resistance to emerald ash borer, which is believed to be caused by the high [[tannin]] content in the leaves making the foliage unpalatable to the insect. While most Asian ashes have evolved this defense, it is absent from American species other than blue ash. Researchers have examined populations of so-called "lingering ash", trees that survived ash borer attack with little or no damage, as a means of grafting or breeding new, resistant stock. Many of these lingering ashes were found to have unusual phenotypes that may result in increased resistance. Aside from their higher tannin content, Asian ashes also employ natural defenses to repel, trap, and kill emerald ash borer larvae. Although studies of American ashes have suggested that they are capable of mustering similar defensive mechanisms, the trees do not appear to recognize when they are under attack.<ref name="Anulewicz, et al. 2007">{{cite journal |last1=Anulewicz |first1=Andrea C. |last2=McCullough |first2=Deborah G. |last3=Cappaert |first3=David L. |title=Emerald Ash Borer (''Agrilus planipennis'') Density and Canopy Dieback in Three North American Ash Species |journal=Arboriculture & Urban Forestry |volume=33 |issue=5 |pages=338–349 |date=September 2007 |doi=10.
Other factors can limit spread. Winter temperatures of approximately {{cvt|-38|°C|°F}} limit range expansion
North American predators and parasitoids can occasionally cause high emerald ash borer mortality, but generally offer only limited control. Mortality from native woodpeckers is variable. Parasitism by parasitoids such as ''[[Atanycolus cappaerti]]'' can be high, but overall such control is generally low.<ref name="Herms et al. 2013"/>
The [[United States Department of Agriculture]]'s [[Animal and Plant Health Inspection Service]] published a rule on December 14, 2020—to take effect one month later, January 14, 2021—ending all EAB quarantine activities in the [[United States]] due to ineffectiveness so far.<ref name="APHIS-relax-EAB" /><ref name="APHIS-relax-EAB-final-rule" /> Other means will be used instead, especially biological controls (see [[#Biological control|§Biological control]] below).<ref name="APHIS-relax-EAB" /><ref name="APHIS-relax-EAB-final-rule" />
These insects have managed to eliminate close to 300,000 Ash trees in the National Capital Region in only nine years. This leaves only 80,000 ash trees left standing either due to luck or to some amount of resistance to the beetles. These forests used to have an extremely dense Ash population having 17-18 trees per Hectare now there are only 5-6 trees per Hectare. This illustrates extremely well the overall destructive power of the Emerald Ash Borer and the relevance to the everyday person. Something extremely important to note about this severe loss of Ash trees is the effect that it has on the ecosystem of that area. Swamplands that used to be home many Ash forest have now become shrublands, completely changing the ecosystem of that area permanently. The impact this has on the wildlife is extreme because of all the animals that used every part of the tree as refuge, such as birds in the foliage, small rodents amongst the roots, etc.<ref>{{Cite web |last=Crystal |first=Chen |date=September 28, 2022 |title=Ash Tree Update 2021 |url=https://www.nps.gov/articles/000/ash-tree-update-2021.htm}}</ref>
===Environmental and economic impacts===
Emerald ash borer threatens the entire North American genus ''[[Fraxinus]]''. It has killed tens of millions of ash trees so far and threatens to kill most of the 8.7 billion ash trees throughout North America.<ref name="USDA info"/> Emerald ash borer kills young trees several years before reaching their seeding age of 10 years.<ref name="Herms et al. 2013" /> In both North America and Europe, the loss of ash from an ecosystem can result in increased numbers of invasive plants, changes in soil nutrients, and effects on species that feed on ash.<ref name="Valenta2016"/>
Damage and efforts to control the spread of emerald ash borer have affected businesses that sell ash trees or wood products, property owners, and local or state governments.<ref name="Herms et al. 2013" /> Quarantines can limit the transport of ash trees and products, but economic impacts are especially high for urban and residential areas because of treatment or removal costs and decreased land value from dying trees.<ref name="SLAM">{{cite journal |last1=McCullough |first1=D.G. |title=Evaluation of potential strategies to SLow Ash Mortality (SLAM) caused by emerald ash borer (''Agrilus planipennis''): SLAM in an urban forest |journal=International Journal of Pest Management |volume=58 |pages=9–23 |year=2012 |url=http://www.actrees.org/wp-content/uploads/2012/12/Urban-SLAM-pdf.pdf |doi=10.1080/09670874.2011.637138 |s2cid=62821195 |display-authors=etal |access-date=2016-02-10 |archive-date=2021-07-25 |archive-url=https://web.archive.org/web/20210725054945/http://www.actrees.org/wp-content/uploads/2012/12/Urban-SLAM-pdf.pdf |url-status=dead }}</ref> Costs for managing these trees can fall upon homeowners or local municipalities. For municipalities, removing large numbers of dead or infested trees at once is costly, so slowing down the rate at which trees die through removing known infested trees and treating trees with insecticides can allow local governments more time to plan, remove, and replace trees that would eventually die. This strategy saves money as it would cost $10.7 billion in urban areas of 25 states over 10 years, while removing and replacing all ash trees in these same areas at once would cost $25 billion<ref name="SLAM"/><ref name="Kovacs, et al. 2010">{{cite journal |last=Kovacs |first=K. F.|display-authors=etal |date=September 2009 |title=Cost of potential emerald ash borer damage in U.S. communities, 2009-2019. |url=http://m.mi.gov/documents/mda/EAB_-_Ecol_Econ_-_reprint_325348_7.pdf |url-status=dead |journal=Ecological Economics |volume=69 |issue=3 |pages=569–578 |doi=10.1016/j.ecolecon.2009.09.004 |archive-url=https://web.archive.org/web/20140407100616/http://m.mi.gov/documents/mda/EAB_-_Ecol_Econ_-_reprint_325348_7.pdf |archive-date=April 7, 2014}}</ref> (with another estimate putting the removal alone at $20–60 billion).<ref name="Cappaert et al. 2005" /> Some urban areas such as [[Minneapolis]] have large amounts of ash with slightly more than 20% of their [[urban forest]] as ash.<ref>{{cite web |title=Emerald Ash Borer (EAB) is in Minneapolis |publisher=Minneapolis Park and Recreation Board |url=http://www.minneapolisparks.org/default.asp?PageID=1059 |access-date=August 29, 2013 |archive-url=https://web.archive.org/web/20130808004843/http://minneapolisparks.org/default.asp?PageID=1059 |archive-date=August 8, 2013 |url-status=dead}}</ref>
===Monitoring===
Line 85 ⟶ 88:
====Quarantine and tree removal====
Once an infestation is detected, quarantines are typically imposed by state, or previously, national government agencies disallowing transport of ash firewood or live plants outside of these areas without permits indicating the material has been inspected or treated (i.e., heat treatment or wood chipping) to ensure no live emerald ash borer are present in the bark and phloem.<ref name="UScountydetections">{{cite web |title=Initial County EAB detections in North America |url=http://www.emeraldashborer.info/documents/MultiState_EABpos.pdf |publisher=USDA |access-date=28 January 2017}}</ref><ref>{{cite web |title=Moving Firewood |url=http://www.emeraldashborer.info/moving-firewood.php |publisher=USDA |access-date=28 January 2017 |archive-date=12 September 2021 |archive-url=https://web.archive.org/web/20210912141032/http://www.emeraldashborer.info/moving-firewood.php |url-status=dead }}</ref> In urban areas, trees are often removed once an infestation is found to reduce emerald ash borer population densities and the likelihood of further spread. Urban ash are typically replaced with non-ash species such as maple, oak, or linden to limit food sources.<ref>{{cite web |title=Ash replacement information |publisher=USDA Forest Service |url=http://www.emeraldashborer.info/replacement.cfm |access-date=July 15, 2014 |archive-date=January 26, 2016 |archive-url=https://web.archive.org/web/20160126094154/http://www.emeraldashborer.info/replacement.cfm |url-status=dead }}</ref> In rural areas, trees can be harvested for lumber or firewood to reduce ash stand density, but quarantines may apply for this material, especially in areas where the material could be infested.<ref>{{cite web |title=SLAM: SLow Ash Mortality |url=http://www.slameab.info/ |url-status=dead |archive-url=https://web.archive.org/web/20150302221108/http://www.slameab.info/ |archive-date=March 2, 2015}}</ref>
[[Cooperative State Research, Education, and Extension Service|Kentucky Extension]] specialists suggest selecting uncommon species to replace removed ashes in the landscape.<ref>{{Cite web |url=http://www2.ca.uky.edu/agcomm/pubs/ID/ID241/ID241.pdf |title=After Your Ash Has Died: Making an Informed Decision on What to Replant |website=extension.ca.uky.edu}}</ref> Previous generations created [[monoculture]]s by planting ash trees in an overabundance, a factor in the extent of the devastation caused by the emerald ash borer. Favoring instead a diversity in species helps keep urban forests healthy. [[University of Kentucky College of Agriculture, Food, and Environment|University of Kentucky]] scientists suggest choosing monotypic species such as the [[Asimina triloba|pawpaw]], [[Cladrastis kentukea|yellowwood]], [[Franklinia|Franklin tree]], [[Kentucky coffeetree]], [[Maclura pomifera|Osage orange]], [[Oxydendrum|sourwood]], and [[Taxodium distichum|bald cypress]].
Line 93 ⟶ 96:
[[File:Traitement d'un frêne au TreeAzin.jpg|thumb|Treatment of an ash tree on a street in Montreal with the biopesticide TreeAzin]]
Insecticides with active ingredients such as [[azadirachtin]], [[imidacloprid]], [[emamectin|emamectin benzoate]], and [[dinotefuran]] are currently used. Dinotefuran and imidacloprid are systemic (i.e., incorporated into the tree) and remain effective for one to three years depending on the product.<ref name="Herms et al. 2013" /><ref name="NCIPMC Bulletin"/><ref name="FAQ">{{Citation |last1=Hahn |first1=Jeffrey |last2=Herms |first2=Daniel A. |last3=McCullough |first3=Deborah G. |title=Frequently Asked Questions Regarding Potential Side Effects of Systemic Insecticides Used to Control Emerald Ash Borer |publisher=www.emeraldashborer.info |date=February 2011 |url=http://emeraldashborer.info/files/Potential_Side_Effects_of_EAB_Insecticides_FAQ.pdf |access-date=August 30, 2013 |archive-date=July 14, 2015 |archive-url=https://web.archive.org/web/20150714223037/http://emeraldashborer.info/files/Potential_Side_Effects_of_EAB_Insecticides_FAQ.pdf |url-status=dead }}</ref> Insecticides are typically only considered a viable option in urban areas with high value trees near an infestation.<ref name="NCIPMC Bulletin">{{Citation |last1=Herms |first1=Daniel A. |last2=McCullough |first2=Deborah G. |last3=Smitley |first3=David R. |last4=Sadof |first4=Clifford S. |last5=Williamson |first5=R. Chris |last6=Nixon |first6=Phillip L. |title=Insecticide Options for Protecting Ash Trees from Emerald Ash Borer |journal=North Central IPM Center Bulletin |date=June 2009 |pages=12 |url=http://www.emeraldashborer.info/files/multistate_eab_insecticide_fact_sheet.pdf |access-date=August 30, 2013 |archive-date=January 26, 2016 |archive-url=https://web.archive.org/web/20160126222133/http://www.emeraldashborer.info/files/multistate_EAB_Insecticide_Fact_Sheet.pdf |url-status=dead }}</ref> Ash trees are primarily treated by direct injection into the tree or soil drench. Some insecticides cannot be applied by homeowners and must be applied by licensed applicators. Damage from emerald ash borer can continue to increase over time even with insecticide applications.<ref name="Herms et al. 2013" /> Insecticide treatments are not feasible for large forested areas outside of urban areas.<ref name="Herms et al. 2013" />
====Biological control{{anchor|biocontrol}}====
[[File:Tetrastichus planipennisi D2140-19.jpg|thumb|upright|''Tetrastichus planipennisi'', a [[parasitoid]] wasp used as a [[biological control]] agent]]
The native range of emerald ash borer in Asia was surveyed for parasitoid species that parasitize emerald ash borer and do not attack other insect species in the hope they would suppress populations when released in North America.<ref name="APHIS">{{cite journal |last1=Bauer |first1=L.S. |last2=Liu |first2=H-P |last3=Miller |first3=D. |last4=Gould |first4=J. |year=2008 |title=Developing a classical biological control program for ''Agrilus planipennis'' (Coleoptera: Buprestidae), an invasive ash pest in North America |journal=Newsletter of the Michigan Entomological Society |volume=53 |issue=3&4 |pages=38–39 |url=http://www.nrs.fs.fed.us/pubs/jrnl/2008/nrs_2008_bauer_002.pdf |access-date=2014-08-25 |archive-date=2011-10-04 |archive-url=https://web.archive.org/web/20111004090830/http://www.nrs.fs.fed.us/pubs/jrnl/2008/nrs_2008_bauer_002.pdf |url-status=dead }}</ref> Three species imported from China were approved for release by the [[USDA]] in 2007 and in Canada in 2013: ''[[Spathius agrili]]'', ''[[Tetrastichus planipennisi]]'', and ''[[Oobius agrili]]'', while ''[[Spathius galinae]]'' was approved for release in 2015.<ref>{{Cite web |url=http://www.nrs.fs.fed.us/disturbance/invasive_species/eab/control_management/biological_control/ |title=Biological Control of the Emerald Ash Borer |publisher=United States Department of Agriculture Forest Service |access-date=2014-08-25 |archive-date=2021-09-15 |archive-url=https://web.archive.org/web/20210915160723/https://www.nrs.fs.fed.us/disturbance/invasive_species/eab/control_management/biological_control/ |url-status=dead }}</ref><ref name="Bauer2015">{{cite journal |last1=Bauer |first1=Leah S. |last2=Duan |first2=Jian J. |last3=Gould |first3=Juli R. |last4=van Driesche |first4=Roy|display-authors=etal |date=March 8, 2015 |title=Progress in the classical biological control of ''Agrilus planipennis'' Fairmaire (Coleoptera: Buprestidae) in North America |journal=[[The Canadian Entomologist]] |volume=147 |issue=3 |pages=300–317 |doi=10.4039/tce.2015.18 |s2cid=82909547}}</ref> Excluding ''Spathius galinae'', which has only recently been released, the other three species have been documented parasitizing emerald ash borer larvae one year after release, indicating that they survived the winter, but establishment varied among species and locations.<ref name="Bauer2015"/> ''Tetrastichus planipennisi'' and ''Oobius agrili'' established and have had increasing populations in Michigan since 2008; ''Spathius agrili'' has had lower establishment success in North America, which could be caused by a lack of available emerald ash borer larvae at the time of adult emergence in spring, limited cold tolerance, and better suitability to regions of North America below the 40th parallel.<ref name="Bauer2015"/>
The USDA is also assessing the application of ''[[Beauveria bassiana]]'', an insect fungal [[pathogen]], for controlling emerald ash borer in conjunction with parasitoid wasps.<ref name="ScienceDaily">{{cite web |title=Biocontrol: Fungus and Wasps Released to Control Emerald Ash
==See also==
Line 119 ⟶ 122:
{{Commons category|Agrilus planipennis}}
{{Wikispecies|Agrilus planipennis}}
<!-- *[http://www.chiefrivernursery.com/interview-with-dr-robert-haack/ Interview with researcher] -->
*[
<!-- *[http://nrs.fs.fed.us/disturbance/invasive_species/eab/ USDA Forest Service Northern Research Station link to research on EAB] -->
*[https://www.invasivespeciesinfo.gov/terrestrial/invertebrates/emerald-ash-borer Species Profile
*{{Internet Archive short film|id=gov.usda.aphis.green.menace|name=Emerald Ash Borer: The Green Menace}}
{{Taxonbar|from=Q1960177}}
{{Authority control}}
[[Category:Buprestidae]]
|