Nothing Special   »   [go: up one dir, main page]

Carotenoid: Difference between revisions

Content deleted Content added
Sexual signaling: rm header, we will have only one bird section
Citation bot (talk | contribs)
Added bibcode. | Use this bot. Report bugs. | Suggested by Jay8g | #UCB_toolbar
(25 intermediate revisions by 13 users not shown)
Line 1:
{{Short description|Class of chemical compounds; yellow, orange or red plant pigments}}
[[File:Beta-Carotin.svg|thumb|Chemical structure of β-[[carotene]], a common natural pigment.|420px]]
[[File:Aerial image of Grand Prismatic Spring (view from the south).jpg|thumb|The orange ring surrounding [[Grand Prismatic Spring]] is due to carotenoids produced by [[cyanobacteria]] and other [[bacteria]].]]
 
'''Carotenoids''' ({{IPAc-en|k|ə|ˈ|r|ɒ|t|ɪ|n|ɔɪ|d}}) are yellow, orange, and red [[organic compound|organic]] [[pigment]]s that are produced by [[plant]]s and [[algae]], as well as several bacteria, archaea, and [[Fungus|fungi]].<ref>{{Lehninger4th}}</ref> Carotenoids give the characteristic color to [[pumpkin]]s, [[carrot]]s, [[parsnip]]s, [[maize|corn]], [[tomato]]es, [[Domestic Canary|canaries]], [[flamingo]]s, [[salmon]], [[lobster]], [[shrimp]], and [[daffodil]]s. Over 1,100 knownidentified carotenoids are known,which can be further categorized into two classes, {{ndash}} [[xanthophyll]]s (which contain oxygen) and [[carotene]]s (which are purely [[hydrocarbon]]s and contain no oxygen).<ref>{{Cite journal|last=Yabuzaki|first=Junko|date=2017-01-01|title=Carotenoids Database: structures, chemical fingerprints and distribution among organisms|journal=Database|language=en|volume=2017|issue=1|doi=10.1093/database/bax004|pmid=28365725|pmc=5574413}}</ref>
 
All are [[derivative (chemistry)|derivatives]] of [[tetraterpene]]s, meaning that they are produced from 8 [[isoprene]] units and contain 40 carbon atoms. In general, carotenoids absorb wavelengths ranging from 400 to 550 nanometers (violet to green light). This causes the compounds to be deeply colored yellow, orange, or red. Carotenoids are the dominant pigment in [[autumn]] leaf colorationcolor]]ation of about 15-30% of tree species,<ref name=lpi/> but many plant colors, especially reds and purples, are due to [[polyphenol]]s.
[[File:Updated graphic 24.2.16.png|thumb|Macular pigments of the human eye]]
 
Carotenoids serve two key roles in plants and algae: they absorb light energy for use in [[photosynthesis]], and they provide [[photoprotection]] via [[non-photochemical quenching]].<ref>{{cite journal |vauthors=Armstrong GA, Hearst JE |title=Carotenoids 2: Genetics and molecular biology of carotenoid pigment biosynthesis |journal=FASEB J. |volume=10 |issue=2 |pages=228–37 |year=1996 |pmid=8641556 |doi= 10.1096/fasebj.10.2.8641556|doi-access=free |s2cid=22385652 |url=http://www.fasebj.org/cgi/pmidlookup?view=long&pmid=8641556}}</ref> Carotenoids that contain unsubstituted beta-ionone rings (including [[β-carotene]], [[α-carotene]], [[β-cryptoxanthin]], and [[γ-carotene]]) have [[vitamin A]] activity (meaning that they can be converted to [[retinol]]). In the eye, [[lutein]], [[Meso-Zeaxanthin|''meso''-zeaxanthin]], and [[zeaxanthin]] are present as [[macula|macular pigment]]s whose importance in visual function, as of 2016, remains under [[clinical research]].<ref name=lpi/><ref name="Li">{{cite journal|pmc=4698241|year=2015|last1=Bernstein|first1=P. S.|title=Lutein, Zeaxanthin, and meso-Zeaxanthin: The Basic and Clinical Science Underlying Carotenoid-based Nutritional Interventions against Ocular Disease|journal=Progress in Retinal and Eye Research|volume=50|pages=34–66|last2=Li|first2=B|last3=Vachali|first3=P. P.|last4=Gorusupudi|first4=A|last5=Shyam|first5=R|last6=Henriksen|first6=B. S.|last7=Nolan|first7=J. M.|doi=10.1016/j.preteyeres.2015.10.003|pmid=26541886}}</ref>
 
== Structure and function ==
Line 13:
[[File:72 - gac.jpg|thumb|[[Gac]] fruit, rich in lycopene]]
[[File:Akita Omoriyama Zoo - panoramio.jpg|thumb|Ingesting carotenoid-rich foods affects the [[plumage]] of [[flamingo]]s.]]
[[File:Luteine - Lutein.svg|thumb|385px|[[Lutein]], a [[Xanthophyll]].]]
[[File:Isorenieratene-2D-skeletal.png|thumb|General structure of a carotenoid: polyene tail with double bonds, possible terminal rings]]
Carotenoids are produced by all photosynthetic organisms and are primarily used as [[Accessoryaccessory pigment|accessory pigments]]s to [[chlorophyll]] in the light-harvesting part of photosynthesis.
 
They are highly [[Unsaturated hydrocarbon|unsaturated]] with [[Conjugated system|conjugated double bonds]], which enables carotenoids to absorb light of various [[Wavelength|wavelengthswavelength]]s. At the same time, the terminal groups regulate the [[Chemical polarity|polarity]] and properties within [[Lipid bilayer|lipid membranes]].
 
Most carotenoids are [[tetraterpenoids]], regular <chem>C40</chem> [[isoprenoids]]. Several modifications to these structures exist: including [[Cyclic compound|cyclization]], varying degrees of [[Saturated fat|saturation]] or unsaturation, and other [[functional group]]s.<ref name="Maresca-2008">{{Cite journal |lastlast1=Maresca |firstfirst1=Julia A. |last2=Romberger |first2=Steven P. |last3=Bryant |first3=Donald A. |date=2008-05-28 |title=Isorenieratene Biosynthesis in Green Sulfur Bacteria Requires the Cooperative Actions of Two Carotenoid Cyclases |url=https://journals.asm.org/doi/10.1128/JB.00758-08 |journal=Journal of Bacteriology |language=en |volume=190 |issue=19 |pages=6384–6391 |doi=10.1128/JB.00758-08 |issn=0021-9193 |pmc=2565998 |pmid=18676669}}</ref> Carotenes typically contain only carbon and hydrogen, i.e., they are [[hydrocarbon]]s. Prominent members include [[α-carotene]], [[β-carotene]], and [[lycopene]], are known as '''[[carotene]]s'''. Carotenoids containing oxygen include [[lutein]] and [[zeaxanthin]]. They are known as '''[[xanthophyll]]s'''.<ref name=lpi/> Their color, ranging from pale yellow through bright orange to deep red, is directly related to their structure, especially the length of the conjugation.<ref name=lpi/> Xanthophylls are often yellow, hencegiving their class name.
 
Carotenoids also participate in different types of cell signaling.<ref name="Cogdell-1978">{{Cite journal|last=Cogdell|first=R. J.|date=1978-11-30|title=Carotenoids in photosynthesis|journal=Phil. Trans. R. Soc. Lond. B|language=en|volume=284|issue=1002|pages=569–579|doi=10.1098/rstb.1978.0090|bibcode=1978RSPTB.284..569C|issn=0080-4622}}</ref> They are able to signal the production of [[abscisic acid]], which regulates plant growth, [[seed dormancy]], embryo maturation and [[germination]], [[cell division]] and elongation, floral growth, and stress responses.<ref>{{Cite journal|last=Finkelstein|first=Ruth|date=2013-11-01|title=Abscisic Acid Synthesis and Response|journal=The Arabidopsis Book / American Society of Plant Biologists|volume=11|doi=10.1199/tab.0166|issn=1543-8120|pmc=3833200|pmid=24273463|page=e0166}}</ref>
 
===Photophysics===
The length of the multiple [[Conjugated system|conjugated double bonds]] determines their color and photophysics.<ref name=":2">{{Cite journal|last=Vershinin|first=Alexander|date=1999-01-01|title=Biological functions of carotenoids - diversity and evolution|journal=BioFactors|language=en|volume=10|issue=2–3|pages=99–104|doi=10.1002/biof.5520100203|pmid=10609869|s2cid=24408277|issn=1872-8081}}</ref><ref>{{cite journal |doi=10.1021/cr020674n |title=Ultrafast Dynamics of Carotenoid Excited States−From Solution to Natural and Artificial Systems |year=2004 |last1=Polívka |first1=Tomáš |last2=Sundström |first2=Villy |journal=Chemical Reviews |volume=104 |issue=4 |pages=2021–2072 |pmid=15080720 }}</ref> After absorbing a photon, the carotenoid transfers its excited electron to [[chlorophyll]] for use in photosynthesis.<ref name=":2" /> Upon absorption of light, carotenoids transfer excitation energy to and from [[chlorophyll]]. The singlet-singlet energy transfer is a lower energy state transfer and is used during photosynthesis.<ref name=":3">{{Cite journal|last=Cogdell|first=R. J.|date=1978-11-30|title=Carotenoids in photosynthesis|journal=Phil. Trans. R. Soc. Lond. B|language=en|volume=284|issue=1002|pages=569–579|doi=10.1098/rstb.1978.0090|bibcode=1978RSPTB.284..569C|issn=0080-4622}}<"/ref> The triplet-triplet transfer is a higher energy state and is essential in photoprotection.<ref name=":3Cogdell-1978" /> Light produces damaging species during photosynthesis, with the most damaging being [[reactive oxygen species]] (ROS).<ref>{{Cite journal |last1=Aizpuru |first1=Aitor |last2=González-Sánchez |first2=Armando |date=2024-07-20 |title=Traditional and new trend strategies to enhance pigment contents in microalgae |journal=World Journal of Microbiology and Biotechnology |language=en |volume=40 |issue=9 |pages=272 |doi=10.1007/s11274-024-04070-3 |issn=1573-0972 |pmc=11271434 |pmid=39030303}}</ref> As these high energy ROS are produced in the chlorophyll the energy is transferred to the carotenoid’s polyene tail and undergoes a series of reactions in which electrons are moved between the carotenoid bonds in order to find the most balanced (lowest energy) state for the carotenoid.<ref name=":2" />
 
Carotenoids defend plants against [[singlet oxygen]], by both energy transfer and by chemical reactions. They also protect plants by quenching triplet chlorophyll.<ref>{{cite journal |doi=10.1104/pp.111.182394 |title=Chemical Quenching of Singlet Oxygen by Carotenoids in Plants |year=2012 |last1=Ramel |first1=Fanny |last2=Birtic |first2=Simona |last3=Cuiné |first3=Stéphan |last4=Triantaphylidès |first4=Christian |last5=Ravanat |first5=Jean-Luc |last6=Havaux |first6=Michel |journal=Plant Physiology |volume=158 |issue=3 |pages=1267–1278 |pmid=22234998 |pmc=3291260 }}</ref> By protecting lipids from free-radical damage, which generate charged [[Lipid peroxidation|lipid peroxides]] and other oxidised derivatives, carotenoids support crystalline architecture and hydrophobicity of lipoproteins and cellular lipid structures, hence oxygen solubility and its diffusion therein.<ref>{{Cite book|url=https://www.worldcat.org/oclc/148650411|title=Carotenoids: physical, chemical, and biological functions and properties|date=2010|publisher=CRC Press|author=John Thomas Landrum|isbn=978-1-4200-5230-5|location=Boca Raton|oclc=148650411}}</ref>
 
===Structure-property relationships===
Like some [[fatty acid]]s, carotenoids are [[lipophilic]] due to the presence of long [[Saturated and unsaturated compounds|unsaturated]] [[aliphatic]] chains.<ref name=lpi/> As a consequence, carotenoids are typically present in plasma [[lipoprotein]]s and cellular lipid structures.<ref>{{Citation|last=Gruszecki|first=Wieslaw I.|title=Carotenoids in Membranes|date=2004|url=http://link.springer.com/10.1007/0-306-48209-6_20|work=The Photochemistry of Carotenoids|series=Advances in Photosynthesis and Respiration|volume=8|pages=363–379|editor-last=Frank|editor-first=Harry A.|place=Dordrecht|publisher=Kluwer Academic Publishers|language=en|doi=10.1007/0-306-48209-6_20|isbn=978-0-7923-5942-5|access-date=2021-03-28|editor2-last=Young|editor2-first=Andrew J.|editor3-last=Britton|editor3-first=George|editor4-last=Cogdell|editor4-first=Richard J.}}</ref>
Carotenoids are usually [[lipophilic]] due to the presence of long [[Saturated and unsaturated compounds|unsaturated]] [[aliphatic]] chains as in some [[fatty acid]]s. The physiological absorption of these [[fat-soluble vitamin]]s in humans and other organisms depends directly on the presence of fats and [[bile salt]]s.<ref name=lpi/>
 
Carotenoids also participate in different types of cell signaling.<ref name="Cogdell-1978" /> They are able to signal the production of [[abscisic acid]], which regulates plant growth, [[seed dormancy]], embryo maturation and [[germination]], [[cell division]] and elongation, floral growth, and stress responses.<ref>{{Cite journal|last=Finkelstein|first=Ruth|date=2013-11-01|title=Abscisic Acid Synthesis and Response|journal=The Arabidopsis Book / American Society of Plant Biologists|volume=11|doi=10.1199/tab.0166|issn=1543-8120|pmc=3833200|pmid=24273463|page=e0166}}</ref>
 
== Morphology ==
Carotenoids are located primarily outside the [[cell nucleus]] in different cytoplasm organelles, [[lipid droplet]]s, [[Microbody|cytosomes]] and granules. They have been visualised and quantified by [[raman spectroscopy]] in an [[algal]] cell.<ref>{{Citation|last1=Timlin|first1=Jerilyn A.|title=Localizing and Quantifying Carotenoids in Intact Cells and Tissues|date=2017-06-14|url=http://dx.doi.org/10.5772/68101|work=Carotenoids|publisher=InTech|isbn=978-953-51-3211-0|access-date=2021-03-28|last2=Collins|first2=Aaron M.|last3=Beechem|first3=Thomas A.|last4=Shumskaya|first4=Maria|last5=Wurtzel|first5=Eleanore T.|doi=10.5772/68101|s2cid=54807067 |doi-access=free}}</ref>
 
With the development of [[Monoclonal antibody|monoclonal antibodies]] to ''trans-''[[lycopene]] it was possible to localise this carotenoid in different animal and human cells.<ref name="Tsibezov-2017">{{Cite journal|last1=Tsibezov|first1=Valeriy V.|last2=Bashmakov|first2=Yuriy K.|last3=Pristenskiy|first3=Dmitry V.|last4=Zigangirova|first4=Naylia A.|last5=Kostina|first5=Ludmila V.|last6=Chalyk|first6=Natalya E.|last7=Kozlov|first7=Alexey Y.|last8=Morgunova|first8=Elena Y.|last9=Chernyshova|first9=Marina P.|last10=Lozbiakova|first10=Marina V.|last11=Kyle|first11=Nigel H.|date=2017|title=Generation and Application of Monoclonal Antibody Against Lycopene|url=http://www.liebertpub.com/doi/10.1089/mab.2016.0046|journal=Monoclonal Antibodies in Immunodiagnosis and Immunotherapy|language=en|volume=36|issue=2|pages=62–67|doi=10.1089/mab.2016.0046|pmid=28402743|issn=2167-9436}}</ref><ref name="Petyaev etal-2018">{{Cite journal|last1=Petyaev|first1=Ivan M.|last2=Zigangirova|first2=Naylia A.|last3=Pristensky|first3=Dmitry|last4=Chernyshova|first4=Marina|last5=Tsibezov|first5=Valeriy V.|last6=Chalyk|first6=Natalya E.|display-authors=3|last7=Morgunova|first7=Elena Y.|last8=Kyle|first8=Nigel H.|last9=Bashmakov|first9=Yuriy K.|date=2018|title=Non-Invasive Immunofluorescence Assessment of Lycopene Supplementation Status in Skin Smears|url=http://www.liebertpub.com/doi/10.1089/mab.2018.0012|journal=Monoclonal Antibodies in Immunodiagnosis and Immunotherapy|language=en|volume=37|issue=3|pages=139–146|doi=10.1089/mab.2018.0012|pmid=29901405|s2cid=49190846 |issn=2167-9436}}</ref>
[[File:Aerial image of Grand Prismatic Spring (view from the south).jpg|thumb|The orange ring surrounding [[Grand Prismatic Spring]] is due to carotenoids produced by [[cyanobacteria]] and other [[bacteria]].]]
 
== Oxygenation ==
In plant cells carotenoids are involved in the control of trans-membrane transport of molecular oxygen released in [[photosynthesis]].<ref name="Siefermann-1975">{{Cite journal|last1=Siefermann|first1=D.|last2=Yamamoto|first2=H. Y.|date=1975-01-20|title=NADPH and oxygen-dependent epoxidation of zeaxanthin in isolated chloroplasts|url=https://pubmed.ncbi.nlm.nih.gov/234228/|journal=Biochemical and Biophysical Research Communications|volume=62|issue=2|pages=456–461|doi=10.1016/s0006-291x(75)80160-4|issn=0006-291X|pmid=234228}}</ref><ref name="Karnaukhov-1990">{{Cite journal|last=Karnaukhov|first=V.N.|date=1990|title=Carotenoids: Recent progress, problems and prospects|url=https://linkinghub.elsevier.com/retrieve/pii/030504919090241K|journal=Comparative Biochemistry and Physiology Part B: Comparative Biochemistry|language=en|volume=95|issue=1|pages=1–20|doi=10.1016/0305-0491(90)90241-K|pmid=2184985}}</ref>
 
In animals carotenoids play an important role to support oxygen in its transport, storage and metabolism.
 
=== Transport ===
Carotenoids are hydrophobic and are typically present in plasma [[lipoprotein]]s and cellular lipid structures.<ref>{{Citation|last=Gruszecki|first=Wieslaw I.|title=Carotenoids in Membranes|date=2004|url=http://link.springer.com/10.1007/0-306-48209-6_20|work=The Photochemistry of Carotenoids|series=Advances in Photosynthesis and Respiration|volume=8|pages=363–379|editor-last=Frank|editor-first=Harry A.|place=Dordrecht|publisher=Kluwer Academic Publishers|language=en|doi=10.1007/0-306-48209-6_20|isbn=978-0-7923-5942-5|access-date=2021-03-28|editor2-last=Young|editor2-first=Andrew J.|editor3-last=Britton|editor3-first=George|editor4-last=Cogdell|editor4-first=Richard J.}}</ref> Since molecular oxygen is also a [[Hydrophobe|hydrophobic]] molecule, lipids provide a more favorable environment for O<sub>2</sub> solubility than in aqueous mediums.<ref>{{Cite journal|last1=Bačič|first1=G.|last2=Walczak|first2=T.|last3=Demsar|first3=F.|last4=Swartz|first4=H. M.|date=1988|title=Electron spin resonance imaging of tissues with lipid-rich areas|url=http://doi.wiley.com/10.1002/mrm.1910080211|journal=Magnetic Resonance in Medicine|language=en|volume=8|issue=2|pages=209–219|doi=10.1002/mrm.1910080211|pmid=2850439|s2cid=41810978}}</ref><ref name="Windrem-1980">{{Cite journal|last1=Windrem|first1=David A.|last2=Plachy|first2=William Z.|date=1980|title=The diffusion-solubility of oxygen in lipid bilayers|url=https://linkinghub.elsevier.com/retrieve/pii/0005273680904691|journal=Biochimica et Biophysica Acta (BBA) - Biomembranes|language=en|volume=600|issue=3|pages=655–665|doi=10.1016/0005-2736(80)90469-1|pmid=6250601}}</ref> By protecting lipids from free-radical damage, which generate charged [[Lipid peroxidation|lipid peroxides]] and other oxidised derivatives, carotenoids support crystalline architecture and hydrophobicity of lipoproteins and cellular lipid structures, hence oxygen solubility and its diffusion therein.<ref>{{Cite book|url=https://www.worldcat.org/oclc/148650411|title=Carotenoids : physical, chemical, and biological functions and properties|date=2010|publisher=CRC Press|others=John Thomas Landrum|isbn=978-1-4200-5230-5|location=Boca Raton|oclc=148650411}}</ref><ref>{{Cite journal|last1=Petyaev|first1=Ivan M.|last2=Hunt|first2=James V.|date=1997|title=Micellar acceleration of oxygen-dependent reactions and its potential use in the study of human low density lipoprotein|url=https://linkinghub.elsevier.com/retrieve/pii/S0005276097000052|journal=Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism|language=en|volume=1345|issue=3|pages=293–305|doi=10.1016/S0005-2760(97)00005-2|pmid=9150249}}</ref>
 
=== Storage ===
It was first suggested that carotenoids can be involved in the intracellular depot of oxygen in 1973 by V.N. Karnaukhov.<ref name="Windrem-1980" /> Later it was discovered that carotenoids can also stimulate the formation of intracellular lipid droplets, which can store additional molecular oxygen.<ref>{{Cite journal|last1=Zigangirova|first1=Naylia A.|last2=Morgunova|first2=Elena Y.|last3=Fedina|first3=Elena D.|last4=Shevyagina|first4=Natalia V.|last5=Borovaya|first5=Tatiana G.|last6=Zhukhovitsky|first6=Vladimir G.|last7=Kyle|first7=Nigel H.|last8=Petyaev|first8=Ivan M.|date=2017|title=Lycopene Inhibits Propagation of Chlamydia Infection|journal=Scientifica|language=en|volume=2017|pages=1–11|doi=10.1155/2017/1478625|pmid=28948060|pmc=5602621|issn=2090-908X|doi-access=free}}</ref> These properties of carotenoids help animals to adapt to environmental stresses, [[high altitude]], intracellular infections and other [[Hypoxia (environmental)|hypoxic]] conditions.<ref>{{Cite journal|last1=Gordon|first1=Gerald B.|last2=Barcza|first2=Maureen A.|last3=Bush|first3=Marilyn E.|date=1977|title=Lipid Accumulation in Hypoxic Tissue Culture Cells|journal=The American Journal of Pathology|volume=88|issue=3|pages=663–678|issn=0002-9440|pmc=2032384|pmid=196505}}</ref><ref>{{Cite journal|last1=Karnaukhov|first1=V. N|last2=Fedorov|first2=G. G|date=1977-01-01|title=The role of carotenoids and vitamin A in animal adaptation to high altitude|url=https://dx.doi.org/10.1016/0300-9629%2877%2990210-9|journal=Comparative Biochemistry and Physiology Part A: Physiology|language=en|volume=57|issue=3|pages=377–381|doi=10.1016/0300-9629(77)90210-9|issn=0300-9629}}</ref>
 
=== Respiration ===
Carotenoids, by increasing oxygen diffusion and the oxygen carrying capacity of plasma lipoproteins, can stimulate oxygen delivery into body tissues. This improves tissue and cellular oxygenation and stimulates the growth and respiration of [[Mitochondrion|mitochondria]].<ref>{{Cite journal|last1=Gainer|first1=John L.|last2=Chisolm|first2=G.M.|date=1974|title=Oxygen diffusion and atherosclerosis|url=https://linkinghub.elsevier.com/retrieve/pii/0021915074900495|journal=Atherosclerosis|language=en|volume=19|issue=1|pages=135–138|doi=10.1016/0021-9150(74)90049-5|pmid=4810465}}</ref><ref name="/pubmed_30123743">{{Cite journal|last1=Petyaev|first1=Ivan M.|last2=Chalyk|first2=Natalya E.|last3=Klochkov|first3=Victor A.|last4=Pristensky|first4=Dmitry V.|last5=Chernyshova|first5=Marina P.|last6=Kyle|first6=Nigel H.|last7=Bashmakov|first7=Yuriy K.|date=2018|title=Pharmacokinetics and Oxidation Parameters in Volunteers Supplemented with Microencapsulated Docosahexaenoic Acid|journal=International Journal of Applied & Basic Medical Research|volume=8|issue=3|pages=148–154|doi=10.4103/ijabmr.IJABMR_367_17|issn=2229-516X|pmc=6082003|pmid=30123743}}</ref>
 
=== Synergetic modality ===
Oxygen is required in many intracellular reactions including hydroxylation, which is important for metabolic activation of [[prodrug]]s and [[Hormone|prohormones]], such as vitamin D3. Carotenoids not only provide support for intracellular oxygenation but can also improve efficacy of these molecules.
 
Carotenoids can form physical complexes with different molecules. With hydrophobic molecules this could be self-assembly. With [[Amphiphile|amphiphilic]] or [[Hydrophile|hydrophilic]] compounds the use of lycosome or [[Supercritical carbon dioxide|supercritical CO<sub>2</sub>]] technologies, or other methods, are required.<ref name="/pubmed_30123743"/><sup>]</sup><ref name="Petyaev etal-2012">{{Cite journal|last1=Petyaev|first1=Ivan M.|last2=Dovgalevsky|first2=Pavel Y.|last3=Klochkov|first3=Victor A.|last4=Chalyk|first4=Natalya E.|last5=Kyle|first5=Nigel|date=2012|title=Whey protein lycosome formulation improves vascular functions and plasma lipids with reduction of markers of inflammation and oxidative stress in prehypertension|journal=TheScientificWorldJournal|volume=2012|pages=269476|doi=10.1100/2012/269476|issn=1537-744X|pmc=3541600|pmid=23326213}}</ref> Carotenoids in these complexes provide a new [[Therapy|modality]] of supporting and boosting tissue oxygenation, which could be synergistically beneficial to the therapeutic objectives of different [[nutraceutical]] or [[Medication|pharmaceutical]] molecules.<ref name="Petyaev etal-2012" /><ref>{{Cite journal|last1=Petyaev|first1=Ivan M.|last2=Dovgalevsky|first2=Pavel Y.|last3=Chalyk|first3=Natalia E.|last4=Klochkov|first4=Victor A.|last5=Kyle|first5=Nigel H.|date=2019|title=Reduction of elevated lipids and low-density lipoprotein oxidation in serum of individuals with subclinical hypoxia and oxidative stress supplemented with lycosome formulation of docosahexaenoic acid|journal=Food Science & Nutrition|volume=7|issue=4|pages=1147–1156|doi=10.1002/fsn3.784|issn=2048-7177|pmc=6475726|pmid=31024687}}</ref>
 
==Foods==
[[Beta-carotene]], found in [[pumpkin]]s, [[sweet potato]], [[carrot]]s and [[winter squash]], is responsible for their orange-yellow colors.<ref name=lpi/> Dried carrots have the highest amount of carotene of any food per 100-gram serving, measured in retinol activity equivalents (provitamin A equivalents).<ref name="lpi">{{cite web|publisher=Micronutrient Information Center, Linus Pauling Institute, Oregon State University|url=http://lpi.oregonstate.edu/infocenter/phytochemicals/carotenoids/|title=Carotenoids| date=1 August 2016|access-date=17 April 2019}}</ref><ref>{{Cite web|title = Foods Highest in Retinol Activity Equivalent|url = http://nutritiondata.self.com/foods-000100000000000000000-w.html|website = nutritiondata.self.com|access-date = 2015-12-04}}</ref> Vietnamese [[gac]] fruit contains the highest known concentration of the carotenoid [[lycopene]].<ref>{{cite journal|pmc=4779482|year=2015|last1=Tran|first1=X. T.|title=Effects of maturity on physicochemical properties of Gac fruit (Momordica cochinchinensis Spreng.)|journal=Food Science & Nutrition|volume=4|issue=2|pages=305–314|last2=Parks|first2=S. E.|last3=Roach|first3=P. D.|last4=Golding|first4=J. B.|last5=Nguyen|first5=M. H.|doi=10.1002/fsn3.291|pmid=27004120}}</ref> Although green, [[kale]], [[spinach]], [[collard greens]], and [[turnip greens]] contain substantial amounts of beta-carotene.<ref name=lpi/> The diet of [[flamingo]]s is rich in carotenoids, imparting the orange-colored feathers of these birds.<ref>{{cite journal|pmc=4639753|year=2015|last1=Yim|first1=K. J.|title=Occurrence of viable, red-pigmented haloarchaea in the plumage of captive flamingoes|journal=Scientific Reports|volume=5|pages=16425|last2=Kwon|first2=J|last3=Cha|first3=I. T.|last4=Oh|first4=K. S.|last5=Song|first5=H. S.|last6=Lee|first6=H. W.|last7=Rhee|first7=J. K.|last8=Song|first8=E. J.|last9=Rho|first9=J. R.|last10=Seo|first10=M. L.|last11=Choi|first11=J. S.|last12=Choi|first12=H. J.|last13=Lee|first13=S. J.|last14=Nam|first14=Y. D.|last15=Roh|first15=S. W.|doi=10.1038/srep16425|pmid=26553382|bibcode=2015NatSR...516425Y}}</ref>
<ref>{{Cite web|title = Foods Highest in Retinol Activity Equivalent|url = http://nutritiondata.self.com/foods-000100000000000000000-w.html|website = nutritiondata.self.com|access-date = 2015-12-04}}</ref> Vietnamese [[gac]] fruit contains the highest known concentration of the carotenoid [[lycopene]].<ref>{{cite journal|pmc=4779482|year=2015|last1=Tran|first1=X. T.|title=Effects of maturity on physicochemical properties of Gac fruit (Momordica cochinchinensis Spreng.)|journal=Food Science & Nutrition|volume=4|issue=2|pages=305–314|last2=Parks|first2=S. E.|last3=Roach|first3=P. D.|last4=Golding|first4=J. B.|last5=Nguyen|first5=M. H.|doi=10.1002/fsn3.291|pmid=27004120}}</ref> Although green, [[kale]], [[spinach]], [[collard greens]], and [[turnip greens]] contain substantial amounts of beta-carotene.<ref name=lpi/> The diet of [[flamingo]]s is rich in carotenoids, imparting the orange-colored feathers of these birds.<ref>{{cite journal|pmc=4639753|year=2015|last1=Yim|first1=K. J.|title=Occurrence of viable, red-pigmented haloarchaea in the plumage of captive flamingoes|journal=Scientific Reports|volume=5|pages=16425|last2=Kwon|first2=J|last3=Cha|first3=I. T.|last4=Oh|first4=K. S.|last5=Song|first5=H. S.|last6=Lee|first6=H. W.|last7=Rhee|first7=J. K.|last8=Song|first8=E. J.|last9=Rho|first9=J. R.|last10=Seo|first10=M. L.|last11=Choi|first11=J. S.|last12=Choi|first12=H. J.|last13=Lee|first13=S. J.|last14=Nam|first14=Y. D.|last15=Roh|first15=S. W.|doi=10.1038/srep16425|pmid=26553382|bibcode=2015NatSR...516425Y}}</ref>
 
FodsReviews of preliminary research in 2015 indicated that foods high in carotenoids appearmay toreduce bethe protectiverisk againstof [[head and neck cancers]].<ref>{{cite journal | last1 = Leoncini | last2 = Sources | first2 = Natural | last3 = Head | last4 = Cancer | first4 = Neck |display-authors=et al | date = JulJuly 2015 | title = A Systematic Review and Meta-analysis of Epidemiological Studies | journal = Cancer Epidemiol Biomarkers Prev | volume = 24 | issue = 7| pages = 1003–11 | pmid = 25873578 | doi=10.1158/1055-9965.EPI-15-0053| s2cid = 21131127 }}</ref> Evidenceand is[[prostate lacking to determine whether this is due to carotenoids per secancer]].<ref>{{cite journal | last1 = Soares Nda | first1 = C |display-authors=et al | date = OctOctober 2015 | title = Anticancer properties of carotenoids in prostate cancer. A review | journal = Histol Histopathol | volume = 30 | issue = 10| pages = 1143–54 | pmid = 26058846 | doi=10.14670/HH-11-635|url=https://www.hh.um.es/pdf/Vol_30/30_10/Soares-30-1143-1154-2015.pdf}}</ref> NoThere is no correlation between consumption of foods high in carotenoids and vitamin A and the risk of getting [[Parkinson's disease]].<ref>{{cite journal | last1 = Takeda | first1 = A |display-authors=et al | year = 2014 | title = Vitamin A and carotenoids and the risk of Parkinson's disease: a systematic review and meta-analysis | journal = Neuroepidemiology | volume = 42 | issue = 1| pages = 25–38 | pmid = 24356061 | doi=10.1159/000355849| s2cid = 12396064 | doi-access = free }}</ref>
 
Humans and other [[animal]]s are mostly incapable of synthesizing carotenoids, and must obtain them through their diet. Carotenoids are a common and often ornamental feature in animals. For example, the pink color of [[salmon]], and the red coloring of cooked [[lobster]]s and scales of the yellow morph of [[common wall lizard]]s are due to carotenoids.<ref>{{Cite journal|title = Colour variation in the polymorphic common wall lizard (Podarcis muralis): An analysis using the RGB colour system|last = Sacchi|first = Roberto|date = 4 June 2013|journal = Zoologischer Anzeiger|volume = 252|issue = 4|pages = 431–439|doi = 10.1016/j.jcz.2013.03.001| bibcode=2013ZooAn.252..431S }}</ref>{{citation needed|date=December 2015}} It has been proposed that carotenoids are used in ornamental traits (for extreme examples see [[puffin]] birds) because, given their physiological and chemical properties, they can be used as visible indicators of individual health, and hence are used by animals when selecting potential mates.<ref>{{cite journal|journal=Evol Psychol|year=2012|volume=10|issue=5|pages=842–54|title=Attractive skin coloration: harnessing sexual selection to improve diet and health|vauthors=Whitehead RD, Ozakinci G, Perrett DI|pmid=23253790|doi=10.1177/147470491201000507|s2cid=8655801|doi-access=free|pmc=10429994}}</ref>
 
Carotenoids from the diet are stored in the fatty tissues of animals,<ref name=lpi/> and exclusively [[Carnivore|carnivorous]] animals obtain the compounds from animal fat. In the human diet, [[Small intestine#Absorption|absorption]] of carotenoids is improved when consumed with fat in a meal.<ref name="jfst">{{cite journal | last1=Mashurabad | first1=Purna Chandra | last2=Palika | first2=Ravindranadh | last3=Jyrwa | first3=Yvette Wilda | last4=Bhaskarachary | first4=K. | last5=Pullakhandam | first5=Raghu | title=Dietary fat composition, food matrix and relative polarity modulate the micellarization and intestinal uptake of carotenoids from vegetables and fruits | journal=Journal of Food Science and Technology | volume=54 | issue=2 | date=3 January 2017 | issn=0022-1155 | doi=10.1007/s13197-016-2466-7 | pages=333–341|pmid=28242932|pmc=5306026}}</ref> Cooking carotenoid-containing vegetables in oil and shredding the vegetable both increase carotenoid [[bioavailability]].<ref name=lpi/><ref name=jfst/><ref>{{cite journal |last1=Rodrigo |first1=María Jesús |last2=Cilla |first2=Antonio |last3=Barberá |first3=Reyes |last4=Zacarías |first4=Lorenzo |title=Carotenoid bioaccessibility in pulp and fresh juice from carotenoid-rich sweet oranges and mandarins |journal=Food & Function |date=2015 |volume=6 |issue=6 |pages=1950–1959 |doi=10.1039/c5fo00258c |pmid=25996796}}</ref>
Line 71 ⟶ 54:
 
== Bird colors and sexual selection ==
Dietary carotenoids and their metabolic derivatives are responsible for bright yellow to red coloration in birds.<ref>{{Cite journal|last1=Delhey|first1=Kaspar|last2=Peters|first2=Anne|date=2016-11-16|title=The effect of colour‐producingcolour-producing mechanisms on plumage sexual dichromatism in passerines and parrots|url=http://dx.doi.org/10.1111/1365-2435.12796|journal=Functional Ecology|volume=31|issue=4|pages=903–914|doi=10.1111/1365-2435.12796|issn=0269-8463|doi-access=free}}</ref> Studies estimate that around 2956 modern bird species display carotenoid coloration and that the ability to utilize these pigments for external coloration has evolved independently many times throughout avian evolutionary history.<ref>{{Cite journal|last1=Thomas|first1=Daniel B.|last2=McGraw|first2=Kevin J.|last3=Butler|first3=Michael W.|last4=Carrano|first4=Matthew T.|last5=Madden|first5=Odile|last6=James|first6=Helen F.|date=2014-08-07|title=Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds|url=http://dx.doi.org/10.1098/rspb.2014.0806|journal=Proceedings of the Royal Society B: Biological Sciences|volume=281|issue=1788|pages=20140806|doi=10.1098/rspb.2014.0806|pmid=24966316|pmc=4083795|issn=0962-8452}}</ref> Carotenoid coloration exhibits high levels of [[sexual dimorphism]], with adult male birds generally displaying more vibrant coloration than females of the same species.<ref name="Cooney-2019">{{Cite journal|last1=Cooney|first1=Christopher R.|last2=Varley|first2=Zoë K.|last3=Nouri|first3=Lara O.|last4=Moody|first4=Christopher J. A.|last5=Jardine|first5=Michael D.|last6=Thomas|first6=Gavin H.|date=2019-04-16|title=Sexual selection predicts the rate and direction of colour divergence in a large avian radiation|url=http://dx.doi.org/10.1038/s41467-019-09859-7|journal=Nature Communications|volume=10|issue=1|page=1773|doi=10.1038/s41467-019-09859-7 |pmid=30992444| pmc=6467902|bibcode=2019NatCo..10.1773C |issn=2041-1723}}</ref>
 
These differences arise due to the selection of yellow and red coloration in males by [[Mate choice|female preference]].<ref>{{Cite journal|last=Hill|first=Geoffrey E.|date=September 1990|title=Female house finches prefer colourful males: sexual selection for a condition-dependent trait|url=http://dx.doi.org/10.1016/s0003-3472(05)80537-8|journal=Animal Behaviour|volume=40|issue=3|pages=563–572|doi=10.1016/s0003-3472(05)80537-8|s2cid=53176725|issn=0003-3472}}</ref><ref name="Cooney-2019" /> In many species of birds, females invest greater time and resources into raising offspring than their male partners. Therefore, it is imperative that female birds carefully select high quality mates. Current literature supports the theory that vibrant carotenoid coloration is correlated with male quality—either though direct effects on immune function and oxidative stress,<ref>{{Cite journal|last1=Weaver|first1=Ryan J.|last2=Santos|first2=Eduardo S. A.|last3=Tucker|first3=Anna M.|last4=Wilson|first4=Alan E.|last5=Hill|first5=Geoffrey E.|date=2018-01-08|title=Carotenoid metabolism strengthens the link between feather coloration and individual quality|url=http://dx.doi.org/10.1038/s41467-017-02649-z|journal=Nature Communications|volume=9|issue=1|page=73|doi=10.1038/s41467-017-02649-z|pmid=29311592|pmc=5758789|bibcode=2018NatCo...9...73W |issn=2041-1723}}</ref><ref>{{Cite journal|last1=Simons|first1=Mirre J. P.|last2=Cohen|first2=Alan A.|last3=Verhulst|first3=Simon|date=2012-08-14|title=What Does Carotenoid-Dependent Coloration Tell? Plasma Carotenoid Level Signals Immunocompetence and Oxidative Stress State in Birds–A Meta-Analysis|journal=PLOS ONE|volume=7|issue=8|pages=e43088| pmid=22905205|doi=10.1371/journal.pone.0043088|pmc=3419220|bibcode=2012PLoSO...743088S |issn=1932-6203|doi-access=free}}</ref><ref>{{Cite journal|last1=Koch|first1=Rebecca E.|last2=Hill|first2=Geoffrey E.|date=2018-05-14|title=Do carotenoid‐basedcarotenoid-based ornaments entail resource trade‐offstrade-offs? An evaluation of theory and data|url=http://dx.doi.org/10.1111/1365-2435.13122|journal=Functional Ecology|volume=32|issue=8|pages=1908–1920|doi=10.1111/1365-2435.13122|issn=0269-8463|doi-access=free|bibcode=2018FuEco..32.1908K }}</ref> or through a connection between carotenoid metabolizing pathways and pathways for cellular respiration.<ref>{{Cite journal|last1=Hill|first1=Geoffrey E.|last2=Johnson|first2=James D.|date=November 2012|title=The Vitamin A–Redox Hypothesis: A Biochemical Basis for Honest Signaling via Carotenoid Pigmentation|url=http://dx.doi.org/10.1086/667861|journal=The American Naturalist|volume=180|issue=5|pages=E127–E150|doi=10.1086/667861|pmid=23070328|s2cid=2013258|issn=0003-0147}}</ref><ref>{{Cite journal|last1=Powers|first1=Matthew J|last2=Hill|first2=Geoffrey E|date=2021-05-03|title=A Review and Assessment of the Shared-Pathway Hypothesis for the Maintenance of Signal Honesty in Red Ketocarotenoid-Based Coloration|url=http://dx.doi.org/10.1093/icb/icab056|journal=Integrative and Comparative Biology|volume=61|issue=5|pages=1811–1826|doi=10.1093/icb/icab056|pmid=33940618|issn=1540-7063|doi-access=free}}</ref>
 
It is generally considered that sexually selected traits, such as carotenoid-based coloration, evolve because they are honest signals of phenotypic and genetic quality. For instance, among males of the bird species ''[[great tit|Parus major]]'', the more colorfully ornamented males produce sperm that is better protected against [[oxidative stress]] due to increased presence of carotenoid [[antioxidant]]s.<ref>{{Cite journal |last1=Helfenstein |first1=Fabrice |last2=Losdat |first2=Sylvain |last3=Møller |first3=Anders Pape |last4=Blount |first4=Jonathan D. |last5=Richner |first5=Heinz |date=February 2010 |title=Sperm of colourful males are better protected against oxidative stress |url=https://pubmed.ncbi.nlm.nih.gov/20059524 |journal=Ecology Letters |volume=13 |issue=2 |pages=213–222 |doi=10.1111/j.1461-0248.2009.01419.x |issn=1461-0248 |pmid=20059524|doi-access=free |bibcode=2010EcolL..13..213H }}</ref> However, there is also evidence that attractive male coloration may be a faulty signal of male quality. Among [[stickleback]] fish, males that are more attractive to females due to carotenoid colorants appear to under-allocate carotenoids to their germline cells.<ref name="Kim2020">{{Cite journal |last1=Kim |first1=Sin-Yeon |last2=Velando |first2=Alberto |date=January 2020 |title=Attractive male sticklebacks carry more oxidative DNA damage in the soma and germline |url=https://pubmed.ncbi.nlm.nih.gov/31610052 |journal=Journal of Evolutionary Biology |volume=33 |issue=1 |pages=121–126 |doi=10.1111/jeb.13552 |issn=1420-9101 |pmid=31610052|s2cid=204702365 }}</ref> Since carotinoids are beneficial antioxidants, their under-allocation to [[germline]] cells can lead to increased oxidative [[DNA damage (naturally occurring)|DNA damage]] to these cells.<ref name = Kim2020/> Therefore, female sticklebacks may risk [[fertility]] and the viability of their offspring by choosing redder, but more deteriorated partners with reduced [[sperm]] quality.
 
It is generally considered that sexually selected traits, such as carotenoid-based coloration, evolve because they are honest signals of phenotypic and genetic quality. For instance, among males of the bird species ''[[great tit|Parus major]]'', the more colorfully ornamented males produce sperm that is better protected against [[oxidative stress]] due to increased presence of carotenoid [[antioxidant]]s.<ref>{{Cite journal |last1=Helfenstein |first1=Fabrice |last2=Losdat |first2=Sylvain |last3=Møller |first3=Anders Pape |last4=Blount |first4=Jonathan D. |last5=Richner |first5=Heinz |date=February 2010 |title=Sperm of colourful males are better protected against oxidative stress |url=https://pubmed.ncbi.nlm.nih.gov/20059524 |journal=Ecology Letters |volume=13 |issue=2 |pages=213–222 |doi=10.1111/j.1461-0248.2009.01419.x |issn=1461-0248 |pmid=20059524}}</ref> However, there is also evidence that attractive male coloration may be a faulty signal of male quality. Among [[stickleback]] fish, males that are more attractive to females due to carotenoid colorants appear to under-allocate carotenoids to their germline cells.<ref name="Kim2020">{{Cite journal |last1=Kim |first1=Sin-Yeon |last2=Velando |first2=Alberto |date=January 2020 |title=Attractive male sticklebacks carry more oxidative DNA damage in the soma and germline |url=https://pubmed.ncbi.nlm.nih.gov/31610052 |journal=Journal of Evolutionary Biology |volume=33 |issue=1 |pages=121–126 |doi=10.1111/jeb.13552 |issn=1420-9101 |pmid=31610052|s2cid=204702365 }}</ref> Since carotinoids are beneficial antioxidants, their under-allocation to [[germline]] cells can lead to increased oxidative [[DNA damage (naturally occurring)|DNA damage]] to these cells.<ref name = Kim2020/> Therefore, female sticklebacks may risk [[fertility]] and the viability of their offspring by choosing redder, but more deteriorated partners with reduced [[sperm]] quality.
 
==Aroma chemicals==
Line 86 ⟶ 68:
== Biosynthesis ==
[[File:Carotenoid synthetic pathway.svg|thumb|Pathway of carotenoid synthesis]]
The basic building blocks of carotenoids are [[Isopentenyl pyrophosphate|isopentenyl diphosphate]] (IPP) and [[Dimethylallyl pyrophosphate|dimethylallyl diphosphate]] (DMAPP).<ref name="Nisar-2015">{{Cite journal|last1=Nisar|first1=Nazia|last2=Li|first2=Li|last3=Lu|first3=Shan|last4=Khin|first4=Nay Chi|last5=Pogson|first5=Barry J.|date=2015-01-05|title=Carotenoid Metabolism in Plants|journal=Molecular Plant|series=Plant Metabolism and Synthetic Biology|volume=8|issue=1|pages=68–82|doi=10.1016/j.molp.2014.12.007|pmid=25578273|s2cid=26818009 |doi-access=free}}</ref> These two isoprene isomers are used to create various compounds depending on the biological pathway used to synthesize the isomers.<ref name="Kuzuyama-2012">{{Cite journal|last1=KUZUYAMA|first1=Tomohisa|last2=SETO|first2=Haruo|date=2012-03-09|title=Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis|journal=Proceedings of the Japan Academy. Series B, Physical and Biological Sciences|volume=88|issue=3|pages=41–52|doi=10.2183/pjab.88.41|issn=0386-2208|pmc=3365244|pmid=22450534|bibcode=2012PJAB...88...41K}}</ref> Plants are known to use two different pathways for IPP production: the cytosolic [[mevalonic acid]] pathway (MVA) and the plastidic [[Non-mevalonate pathway|methylerythritol 4-phosphate]] (MEP).<ref name="Nisar-2015" /> In animals, the production of [[cholesterol]] starts by creating IPP and DMAPP using the MVA.<ref name="Kuzuyama-2012" /> For carotenoid production plants use MEP to generate IPP and DMAPP.<ref name="Nisar-2015" /> The MEP pathway results in a 5:1 mixture of IPP:DMAPP.<ref name="Kuzuyama-2012" /> IPP and DMAPP undergo several reactions, resulting in the major carotenoid precursor, [[geranylgeranyl diphosphate]] (GGPP). GGPP can be converted into carotenes or xanthophylls by undergoing a number of different steps within the carotenoid biosynthetic pathway.<ref name="Nisar-2015" />
 
=== MEP pathway ===
Line 98 ⟶ 80:
 
=== Regulation ===
It is believed that both DXS and DXR are rate-determining enzymes, allowing them to regulate carotenoid levels.<ref name="Nisar-2015" /> This was discovered in an experiment where DXS and DXR were genetically overexpressed, leading to increased carotenoid expression in the resulting seedlings.<ref name="Nisar-2015" /> Also, J-protein (J20) and heat shock protein 70 (Hsp70) chaperones are thought to be involved in post-transcriptional regulation of DXS activity, such that mutants with defective J20 activity exhibit reduced DXS enzyme activity while accumulating inactive DXS protein.<ref>{{cite journal|last1=Nisar|first1=Nazia|last2=Li|first2=Li|last3=Lu|first3=Shan|last4=ChiKhin|first4=Nay|last5=Pogson|first5=Barry J.|title=Carotenoid Metabolism in Plants|journal=Molecular Plant|date=5 January 2015|volume=8|issue=1|pages=68–82|doi=10.1016/j.molp.2014.12.007|pmid=25578273|s2cid=26818009 |doi-access=free}}</ref> Regulation may also be caused by external [[toxin]]s that affect enzymes and proteins required for synthesis. Ketoclomazone is derived from [[herbicide]]s applied to soil and binds to DXP synthase.<ref name="Kuzuyama-2012" /> This inhibits DXP synthase, preventing synthesis of DXP and halting the MEP pathway.<ref name="Kuzuyama-2012" /> The use of this toxin leads to lower levels of carotenoids in plants grown in the contaminated soil.<ref name="Kuzuyama-2012" /> [[Fosmidomycin]], an [[Antibiotics|antibiotic]], is a [[Competitive inhibition|competitive inhibitor]] of DXP reductoisomerase due to its similar structure to the enzyme.<ref name="Kuzuyama-2012" /> Application of said antibiotic prevents reduction of DXP, again halting the MEP pathway.&nbsp;<ref name="Kuzuyama-2012" />
 
==Naturally occurring carotenoids==
Line 217 ⟶ 199:
* [[E number#E100–E199 (colours)]]
* [[Phytochemistry]]
 
==Further reading==
*{{cite journal| author=Moran NA, Jarvik T| title=Lateral transfer of genes from fungi underlies carotenoid production in aphids. | journal=Science | year= 2010 | volume= 328 | issue= 5978 | pages= 624–7 | pmid=20431015 | doi=10.1126/science.1187113 | bibcode=2010Sci...328..624M | s2cid=14785276 }}
*{{Cite journal |author1=Boran Altincicek |author2=Jennifer L. Kovacs |author3=Nicole M. Gerardo |year=2011 |title=Horizontally transferred fungal carotenoid genes in the two-spotted spider mite ''Tetranychus urticae'' |journal=[[Biology Letters]] |volume=8 |issue=2 |pages=253–257 |doi=10.1098/rsbl.2011.0704 |pmid=21920958 |pmc=3297373 }}
*{{cite journal| author=Nováková E, Moran NA| title=Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus. | journal=Mol Biol Evol | year= 2012 | volume= 29 | issue= 1 | pages= 313–23 | pmid=21878683 | doi=10.1093/molbev/msr206 }}</ref> It is also produced by [[Endosymbiont|endosymbiotic]] bacteria in [[Whitefly|whiteflies]].<ref name="pmid22977066">{{cite journal| author=Sloan DB, Moran NA| title=Endosymbiotic bacteria as a source of carotenoids in whiteflies. | journal=Biol Lett | year= 2012 | volume= 8 | issue= 6 | pages= 986–9 | pmid=22977066 | doi=10.1098/rsbl.2012.0664 | pmc=3497135 }}
 
==References==
Line 229 ⟶ 206:
==External links==
{{commons category|Carotenoids}}
* [http://www.benbest.com/nutrceut/phytochemicals.html#carotenoids Carotenoid Terpenoids]
* [http://leffingwell.com/caroten.htm Carotenoids as Flavor and Fragrance Precursors]
* [https://www.nsf.gov/news/news_summ.jsp?cntn_id=116842&WT.mc_id=USNSF_52&WT.mc_ev=click Carotenoid gene in aphids]
* [http://www.carotenoidsociety.org/ International Carotenoid Society]
* {{MeshName|Carotenoids}}