Nothing Special   »   [go: up one dir, main page]

Jump to content

Barry Mazur

From Wikiquote
Barry Mazur, 1992

Barry Charles Mazur (born December 19, 1937) is an American mathematics professor at Harvard University, known from his work on geometric and arithmetic topology.

Quotes

[edit]
  • Number theory swarms with bugs, waiting to bite the tempted flower-lovers who, once bitten, are inspired to excesses of effort!
  • Sometimes the mathematical anti-Platonist believes that headway is made by showing Platonism to be unsupportable by rational means, and that it is an incoherent position to take when formulated in a propositional vocabulary. It is easy enough to throw together propositional sentences. But it is a good deal more difficult to capture a Platonic disposition in a propositional formulation that is a full and honest expression of some flesh-and-blood mathematician’s view of things. There is, of course, no harm in trying—and maybe its a good exercise. But even if we cleverly came up with a proposition that is up to the task of expressing Platonism formally, the mere fact that the proposition cannot be demonstrated to be true won’t necessarily make it vanish. There are many things—some true, some false— unsupportable by rational means.

"WHAT IS...a Motive?" 2004

[edit]

Barry Mazur, (2004). "WHAT IS...a Motive?". Notices of the AMS 51 (10): 1214–1216.

  • Vladimir Voevodsky and his collaborators have provided us with a very interesting candidate-category of motives: a category (of sheaves relative to an extraordinarily fine Grothendieck-style topology on the category of schemes) which in some intuitive sense “softens algebraic geometry” so as to allow for a good notion of homotopy in an algebro-geometric setup and is sufficiently directly connected to concrete algebraic geometry to have already yielded some extraordinary applications. The quest for a full theory of motives is a potent driving force in complex analysis, algebraic geometry, automorphic representation theory, the study of L functions, and arithmetic. It will continue to be so throughout the current century.

About Barry Mazur

[edit]
  • Mazur suggests that it’s possible to glimpse the essence of Grothendieck’s approach to mathematics by looking at two concepts—categories and functors. A category can be thought of almost as a grammar: take triangles, perhaps, and understand them in terms of their relationship to all other triangles. The category consists of objects, and relationships between objects. The objects are nouns and the relationships are verbs, and the category is all the ways in which they can interact. Grothendieck’s discoveries opened up mathematics in a way that was analogous to how Wittgenstein (and Saussure) changed our views of language.
[edit]
Wikipedia
Wikipedia
Wikipedia has an article about: