Nothing Special   »   [go: up one dir, main page]

Jump to content

Turán's inequalities

From Wikipedia, the free encyclopedia

In mathematics, Turán's inequalities are some inequalities for Legendre polynomials found by Pál Turán (1950) (and first published by Szegö (1948)). There are many generalizations to other polynomials, often called Turán's inequalities, given by (E. F. Beckenbach, W. Seidel & Otto Szász 1951) and other authors.

If is the th Legendre polynomial, Turán's inequalities state that


For , the th Hermite polynomial, Turán's inequalities are

whilst for Chebyshev polynomials they are

See also

[edit]

References

[edit]
  • Beckenbach, E. F.; Seidel, W.; Szász, Otto (1951), "Recurrent determinants of Legendre and of ultraspherical polynomials", Duke Math. J., 18: 1–10, doi:10.1215/S0012-7094-51-01801-7, MR 0040487
  • Szegö, G. (1948), "On an inequality of P. Turán concerning Legendre polynomials", Bull. Amer. Math. Soc., 54 (4): 401–405, doi:10.1090/S0002-9904-1948-09017-6, MR 0023954
  • Turán, Paul (1950), "On the zeros of the polynomials of Legendre", Časopis Pěst. Mat. Fys., 75 (3): 113–122, doi:10.21136/CPMF.1950.123879, MR 0041284