Nothing Special   »   [go: up one dir, main page]

Jump to content

F-block metallocene: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
YanwuShao (talk | contribs)
adding {{dashboard.wikiedu.org sandbox}}
 
YanwuShao (talk | contribs)
f-Block metallocene
Line 1: Line 1:
'''f-Block Metallocene'''

f-Block Metallocene refers to a class of organometallic sandwich compounds with f-Block metal and electron-rich ligands like cyclopentadienyl anion. It is marked for its strong reductivity.

'''History'''

The first prepared and well-characterized f-block metallocenes were tris(cyclopentadienyl) lanthanide complexes, (C<sub>5</sub>H<sub>5</sub>)<sub>3</sub>Ln (Ln = La, Ce, Pr, Nd, Sm and Gd).<ref>Wilkinson, G.; Birmingham, J. M. ''J. Am. Chem. Soc.'' '''1954''', ''76'', 6210.<div></div></ref><ref>Birmingham, J. M.; Wilkinson, G. ''J. Am. Chem. Soc.'' '''1956''', ''78'', 42.    </ref><ref>Birmingham, J. M.; Wilkinson, G. ''J. Am. Chem. Soc.'' '''1956''', ''78'', 42.    </ref> However, their significance is limited more to their existences and structures than to their reactivity. The cyclopentadienyl ligands of f-block metallocenes were considered as inert ancillary ligands, only being able to enhance their stability and solubility but not their reactivity. In addition, only late and small metals in the lanthanide series, i.e., elements from Sm to Lu, have trivalent metallocene complex, [(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>LnZ]<sub>n</sub><sup>[4,5]</sup><ref>Evans, W. J.; Wayda, A. L. ''Inorg. Chem.'' '''1980''', ''19'', 2190.
</ref> In 1980, the pentamethylcyclopentadienyl ligand, C<sub>5</sub>Me<sub>5</sub><sup>-</sup><sub>,</sub> was introduced to prepare the lanthanide complexes with all metals in the series.<sup>[4,6-9]</sup> Apart from improving stability and solubility of the complex better, it was demonstrated to participate in the organometallic reaction. Subsequently, Evans, W. J. and his coworkers successfully isolated (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Sm(THF)<sub>2</sub><sup>[10]</sup> and (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Sm,<sup>[11]</sup> making a breakthrough in f-block metallocene, since both of these two organosamarium(II) complexes were unexpectedly found to participate in the coordination, activation and transformation of a variety of unsaturated compounds, including olefins,<sup>[10,12-15]</sup> dinitrogen,<sup>[16]</sup> internal alkynens,<sup>[17,18]</sup> phosphaalkynes,<sup>[19]</sup> carbon monoxide,<sup>[20]</sup> carbon dioxide,<sup>[21]</sup> isonitriles,<sup>[22]</sup> diazine derivatives,<sup>[23-25]</sup> imines<sup>[26]</sup> and polycyclic aromatic hydrocarbons (PAHs).<sup>[27]</sup> Moreover, due to its strong reducing potential, it was used to synthesize [(C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Sm(µ-H)]<sub>2</sub> and other the trivalent f-block element complexes.<sup>[17]</sup> Subsequently, tris(pentamethylcyclopentadienyl) lanthanide complexes, (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>Ln, and their relevant complexes were synthesized from the reductive Sm<sup>2+</sup> chemistry. These metallocenes included (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>Sm, [(C<sub>5</sub>H<sub>3</sub>(SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub>Sm, (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Sm(C<sub>5</sub>H<sub>5</sub>), [(C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Sm]<sub>2</sub>(µ-C<sub>5</sub>H<sub>5</sub>).<sup>[28-30]</sup> Later, one tris(pentamethylcyclopentadienyl) f-element halide complexes, (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>UCl, were successfully isolated as the intermediate of the formation of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>UCl<sub>2</sub>.<sup>[31]</sup> It is worthy mentioning that (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>UCl has a very similar structure as (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>U and its uranium-chloride bond (2.90 Å) is relatively longer than the uranium-chloride bonds of other analogues.<sup>[32]</sup> Its existence also indicates that the steric crowding around the center metal is still large enough to accommodate four large ligands and similar complexes of the larger f-block elements or other ligands (Z) are sterically possible: (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>UF,<sup>[31]</sup> (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>ThZ<sup>[33]</sup> and (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>MH<sup>[34]</sup> were subsequently synthesized. Similarly, the crystallographs demonstrate that (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>MZ is structurally similar to (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>M and its M-Z bond distance of is obviously larger than the M-C bond distance.<sup>[32]</sup>

'''Synthesis'''

I. the first f-block metallocene was synthesized through the following equation:<sup>[1,2]</sup>

II. (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>Sm has the following three synthetic pathways:

(i) the first (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>Sm was prepared via exporatory Sm<sup>2+</sup> chemistry with cyclopoctadiene:<sup>[28]</sup>

(ii) Similar to method (i), (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>Sm can be efficiently synthesized from Sm<sup>2+</sup> and (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Pb:<sup>[35]</sup>

In this pathway, (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Sm(OEt)<sub>2</sub> is used since it is more readily available than (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>Sm and does not react with the solvent THF.

(iii) in addition, (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>Sm can also be prepared from trivalent percursors, without ring opening THF.

Actually, this solvated cation routine generally allows the preparation of all (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>Ln since [(C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>LnH]<sub>x</sub> exist for all lanthanide elements.

An alternative unsolvated cation pathway prohibits THF during the reaction since (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>Sm can ring open THF.<sup>[36,37]</sup>

III. Generally, in order to synthesize (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>M, the starting materials and the reaction conditions requires optimizing to ensure (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>M to be the most favored product.<sup>[32]</sup> In addition, the compounds reacting with (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>M like THF, nitirles or isolnitriles, should be avoided.<sup>[32]</sup> Therefore, the following routines are possible options:

(i) For M=Ln including La, Ce, Pr, Nd and Gd, unsolvated cation route is preferred since [(C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>LnH]<sub>x</sub> complexes are too reactive.

Notably, the synthesis of (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>La and (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>Ce requires the usage of silylated glassware since they are extremely easy to be oxidized.

(ii)          For M=actinide like U, solvated cation route can be used.

IV. for the synthesis of (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>MZ with Z=X, H, etc., they could be prepared through the following pathways.<sup>[31,34]</sup> It is worth noting that (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>UCl is isolated from the synthetic reaction of (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>UCl<sub>2</sub>.<sup>[31]</sup>

'''Reactivity'''

Unlike d-block elements, f-block elements do not follow 18-electron rules due to their f-orbitals.<sup>[38]</sup> As a result, they are more electron-rich and so much more reductive. For example, (C<sub>5</sub>H<sub>4</sub>SiMe<sub>3</sub>)<sub>3</sub>Ln have extremely negative reduction potentials that are -2.7 to -3.9 Volts versus the standard hydrogen electrode (NHE).<sup>[39]</sup> It is even able to reduce some d-block metallocenes like ferrocene. Furthermore, in comparison with d-orbitals of transition metals, the radial extension of their 4f-orbitals are really small and limited, which greatly reduces the orbital effects.<sup>[40]</sup> More specifically, its 4fn electron configurations have almost no effect on its chemical reactivity and its electrostatic interactions require optimizing through ligand geometries. Moreover, the reactivity of the f-block element complexes relies heavily on their sterics. In other words, a sterically saturated structure offers the best stability, and so, both ligand size or metal size can be twisted to modify the reactivity.<sup>[40]</sup> These special properties allow the following reactions to occur.

I.              Alkyl-like Reactivity

Like alkyl group, the electron-rich ligand of f-block metallocenes can act as a nucleophile during organometallic reactions. For example, it can polymerize double bonds,<sup>[41]</sup> open rings,<sup>[37, 42]</sup> etc.

II.            Ligand Cleavage

Especially in the presence of Lewis acids like B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> or Al<sub>2</sub>Me<sub>6</sub>, the Cp and other similar ligands can be removed through the following reactions.<sup>[43]</sup> This indicates that Lewis acids probably can be used to activate f-block metallocene for organometallic reactions like polymerizations.

III.          Insertions

The f-block metallocenes are able to undergo insertion reactions of compounds like carbon monoxide,<sup>[44]</sup> nitriles or isocyanates.<sup>[37]</sup>

IV.          Reductivity

(i)            Ordinary reductions

Since the Cp or other similar ligand of f-block metallocenes are very electropositive, it tends to lose one electron and pentamethylcyclopentadiene, which results in the strong reductivity of f-block metallocenes.

(ii)          Sterically induced reduction (SIR)

Sterically crowded complexes like (C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>Sm are able to provided strong reductivity and so this type of reaction was named as SIR.<sup>[45]</sup> Due to the strong steric hindrance, one ligand cannot bind to the metal center at the ideal distance and so the complex is not electrostatically stable.<sup>[32]</sup> Thus, the anion is more inclined to become oxidized and leave the complex. This tendency gives it strong reductivity.

(1) Wilkinson, G.; Birmingham, J. M. ''J. Am. Chem. Soc.'' '''1954''', ''76'', 6210.

(2) Birmingham, J. M.; Wilkinson, G. ''J. Am. Chem. Soc.'' '''1956''', ''78'', 42.

(3) Schumann, H.; Meesemarktscheffel, J. A.; Esser, L. ''Chem. Rev.'' '''1995''', ''95'', 865.

(4) Evans, W. J.; Wayda, A. L. ''Inorg. Chem.'' '''1980''', ''19'', 2190.


(5) Evans, W. J. In ''The Chemistry of the Metal''-''Carbon Bond'';  Hartley, F. R., Patai, S., Eds.; John Wiley: New York, 1982.

(6) King, R. B. ''Coord. Chem. Rev.'' '''1976''', ''20'', 155.


(7) Wolczanski, P. T.; Bercaw, J. E. ''Acc. Chem. Res.'' '''1980''', ''11'', 121.

(8) Watson, P. L. ''J. Chem. Soc., Chem. Commun.'' '''1980''', 652.


(9) Tilley, T. D.; Anderson, R. A.; Spencer, B.; Ruben, H.; Zalkin, A.; Templeton, D. H. ''Inorg. Chem.'' '''1980''', ''19'', 2999.


(10) Evans, W. J.; Bloom, I.; Hunter, W. E.; Atwood, J. L. ''J. Am. Chem. Soc.'' '''1981''', ''103'', 6507.


(11) Evans, W. J.; Hughes, L. A.; Hanusa, T. P. ''J. Am. Chem. Soc.'' '''1984''', ''106'', 4270.


(12) Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. ''J. Am. Chem. Soc.'' 219.

(13) Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. ''J. Am. Chem. Soc.'' '''1990''', ''112'', 2314. 


(14) Evans, W. J.; Chamberlain, L. R.; Ulibarri, T. A.; Ziller, J. W. ''J. Am. Chem. Soc.'' '''1988''', ''110'', 6423. 


(15) Evans, W. J.; Keyer, R. A.; Rabe, G. W.; Drummond, D. K.; Ziller, J. W. ''Organometallics'' '''1993''', ''12'', 4664.

(16) Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. ''J. Am. Chem. Soc.'' '''1988''', ''110'', 6877.

(17) Evans, W. J.; Bloom, I.; Hunter, W. E.; Atwood, J. L. ''J. Am. Chem. Soc.'' '''1983''', ''105'', 1401. 


(18) Evans, W. J.; Giarikos, D. G.; Robledo, C. B.; Leong, V. S.; Ziller, J. W. ''Organometallics'' '''2001''', ''20'', 5648. 


(19) Recknagel, A.; Stalke, D.; Roesky, H. W.; Edelmann, F. T. ''Angew. Chem., Int. Ed. Engl.'' '''1989''', ''28'', 445. 


(20) Evans, W. J.; Grate, J. W.; Hughes, L. A.; Zhang, H.; Atwood, J. L. ''J. Am. Chem. Soc.'' '''1985''', ''107'', 3728. 


(21) Evans, W. J.; Seibel, C. A.; Ziller, J. W. ''Inorg. Chem.'' '''1998''', ''37'', 770. 


(22) Evans, W. J.; Drummond, D. K. ''Organometallics'' '''1988''', ''7'', 797. 


(23) Evans, W. J.; Drummond, D. K.; Bott, S. G.; Atwood, J. L. 
''Organometallics'' '''1986''', ''5'', 2389. 


(24) Evans, W. J.; Drummond, D. K. ''J. Am. Chem. Soc.'' '''1986''', ''108'', 
7440. 


(25) Evans, W. J.; Drummond, D. K.; Chamberlain, L. R.; Doedens, 
R. J.; Bott, S. G.; Zhang, H.; Atwood, J. L. ''J. Am. Chem. Soc.'' 
'''1988''', ''110'', 4983. 


(26) Evans, W. J.; Drummond, D. K. ''J. Am. Chem. Soc.'' '''1989''', ''111'', 
3329. 


(27) Evans, W. J.; Gonzales, S. L.; Ziller, J. W. ''J. Am. Chem. Soc.'' 
'''1994''', ''116'', 2600.

(28) Evans, W. J.; Gonzales, S. L.; Ziller, J. W. ''J. Am. Chem. Soc.'' '''1991''', ''113'', 7423.


(29) Evans, W. J.; Keyer, R. A.; Ziller, J. W. ''J. Organomet. Chem.'' 
'''1990''', ''394'', 87. 


(30) Evans, W. J.; Ulibarri, T. A. ''J. Am. Chem. Soc.'' '''1987''', ''109'', 4292.

(31) Evans, W. J.; Nyce, G. W.; Johnston, M. A.; Ziller, J. W. ''J. Am. Chem. Soc.'' '''2000''', ''122'', 12019.

(32) Evans, W. J.; Davis, B. J. ''Chem. Rev.'' '''2002''', 102, 2119−2136.

(33) Blake, P. C.; Edelstein, N. M.; Hitchcock, P. B.; Kot, W. K.; Lappert, M. F.; Shalimoff, G. V.; Tian, S. J. Organomet. Chem. '''2001''', 636, 124.

(34) Evans, W. J.; Nyce, G. W.; Ziller, J. W. ''Organometallics'' '''2001''', ''20'', 5489.

(35) Evans, W. J.; Forrestal, K. J.; Leman, J. T.; Ziller, J. W. ''Organometallics'' '''1996''', ''15'', 527.

(36) Evans, W. J.; Seibel,C.A.;Ziller, J. W. ''J. Am. Chem.Soc.'''''1998''', ''120'', 6745.


(37) Evans, W. J.; Forrestal, K. J.; Ziller, J. W. ''J. Am. Chem. Soc.'' '''1998''', ''120'', 9273.

(38) Evans, W. J. ''Adv. Organomet. Chem.'' '''1985''', ''24'', 131.

(39) Evans, W. J. ''Inorg. Chem.'' '''2007''', 46, 3435-3449.

(40) Evans, W. J. ''Polyhedron'' '''1987''', ''6'', 803.


(41) Evans, W. J.; DeCoster, D. M.; Greaves, J. ''Macromolecules.'' '''1995''', 
''28'', 7929. 


(42) Evans, W. J.; Ulibarri, T. A.; Chamberlain, L. R.; Ziller, J. W.; Alvarez, D. ''Organometallics'' '''1990''', ''9'', 2124.

(43) Evans, W. J.; Davis, B. L.; Perotti, J. M.; Kozimor, S.; Ziller, J. W. Manuscript in preparation.

(44) Evans, W. J.; Forrestal, K. J.; Ziller, J. W. ''J. Am. Chem. Soc.'' '''1995''', ''117'', 12635.

(45) Evans, W. J. ''Coord. Chem. Rev.'' '''2000''', ''206'', 263.

{{dashboard.wikiedu.org sandbox}}
{{dashboard.wikiedu.org sandbox}}

Revision as of 23:58, 10 March 2016

f-Block Metallocene

f-Block Metallocene refers to a class of organometallic sandwich compounds with f-Block metal and electron-rich ligands like cyclopentadienyl anion. It is marked for its strong reductivity.

History

The first prepared and well-characterized f-block metallocenes were tris(cyclopentadienyl) lanthanide complexes, (C5H5)3Ln (Ln = La, Ce, Pr, Nd, Sm and Gd).[1][2][3] However, their significance is limited more to their existences and structures than to their reactivity. The cyclopentadienyl ligands of f-block metallocenes were considered as inert ancillary ligands, only being able to enhance their stability and solubility but not their reactivity. In addition, only late and small metals in the lanthanide series, i.e., elements from Sm to Lu, have trivalent metallocene complex, [(C5H5)2LnZ]n[4,5][4] In 1980, the pentamethylcyclopentadienyl ligand, C5Me5-, was introduced to prepare the lanthanide complexes with all metals in the series.[4,6-9] Apart from improving stability and solubility of the complex better, it was demonstrated to participate in the organometallic reaction. Subsequently, Evans, W. J. and his coworkers successfully isolated (C5Me5)2Sm(THF)2[10] and (C5Me5)2Sm,[11] making a breakthrough in f-block metallocene, since both of these two organosamarium(II) complexes were unexpectedly found to participate in the coordination, activation and transformation of a variety of unsaturated compounds, including olefins,[10,12-15] dinitrogen,[16] internal alkynens,[17,18] phosphaalkynes,[19] carbon monoxide,[20] carbon dioxide,[21] isonitriles,[22] diazine derivatives,[23-25] imines[26] and polycyclic aromatic hydrocarbons (PAHs).[27] Moreover, due to its strong reducing potential, it was used to synthesize [(C5Me5)2Sm(µ-H)]2 and other the trivalent f-block element complexes.[17] Subsequently, tris(pentamethylcyclopentadienyl) lanthanide complexes, (C5Me5)3Ln, and their relevant complexes were synthesized from the reductive Sm2+ chemistry. These metallocenes included (C5Me5)3Sm, [(C5H3(SiMe3)2]3Sm, (C5Me5)2Sm(C5H5), [(C5Me5)2Sm]2(µ-C5H5).[28-30] Later, one tris(pentamethylcyclopentadienyl) f-element halide complexes, (C5Me5)3UCl, were successfully isolated as the intermediate of the formation of (C5Me5)2UCl2.[31] It is worthy mentioning that (C5Me5)3UCl has a very similar structure as (C5Me5)3U and its uranium-chloride bond (2.90 Å) is relatively longer than the uranium-chloride bonds of other analogues.[32] Its existence also indicates that the steric crowding around the center metal is still large enough to accommodate four large ligands and similar complexes of the larger f-block elements or other ligands (Z) are sterically possible: (C5Me5)3UF,[31] (C5Me5)3ThZ[33] and (C5Me5)3MH[34] were subsequently synthesized. Similarly, the crystallographs demonstrate that (C5Me5)3MZ is structurally similar to (C5Me5)3M and its M-Z bond distance of is obviously larger than the M-C bond distance.[32]

Synthesis

I. the first f-block metallocene was synthesized through the following equation:[1,2]

II. (C5Me5)3Sm has the following three synthetic pathways:

(i) the first (C5Me5)3Sm was prepared via exporatory Sm2+ chemistry with cyclopoctadiene:[28]

(ii) Similar to method (i), (C5Me5)3Sm can be efficiently synthesized from Sm2+ and (C5Me5)2Pb:[35]

In this pathway, (C5Me5)2Sm(OEt)2 is used since it is more readily available than (C5Me5)3Sm and does not react with the solvent THF.

(iii) in addition, (C5Me5)3Sm can also be prepared from trivalent percursors, without ring opening THF.

Actually, this solvated cation routine generally allows the preparation of all (C5Me5)3Ln since [(C5Me5)3LnH]x exist for all lanthanide elements.

An alternative unsolvated cation pathway prohibits THF during the reaction since (C5Me5)3Sm can ring open THF.[36,37]

III. Generally, in order to synthesize (C5Me5)3M, the starting materials and the reaction conditions requires optimizing to ensure (C5Me5)3M to be the most favored product.[32] In addition, the compounds reacting with (C5Me5)3M like THF, nitirles or isolnitriles, should be avoided.[32] Therefore, the following routines are possible options:

(i) For M=Ln including La, Ce, Pr, Nd and Gd, unsolvated cation route is preferred since [(C5Me5)2LnH]x complexes are too reactive.

Notably, the synthesis of (C5Me5)3La and (C5Me5)3Ce requires the usage of silylated glassware since they are extremely easy to be oxidized.

(ii)          For M=actinide like U, solvated cation route can be used.

IV. for the synthesis of (C5Me5)3MZ with Z=X, H, etc., they could be prepared through the following pathways.[31,34] It is worth noting that (C5Me5)3UCl is isolated from the synthetic reaction of (C5Me5)3UCl2.[31]

Reactivity

Unlike d-block elements, f-block elements do not follow 18-electron rules due to their f-orbitals.[38] As a result, they are more electron-rich and so much more reductive. For example, (C5H4SiMe3)3Ln have extremely negative reduction potentials that are -2.7 to -3.9 Volts versus the standard hydrogen electrode (NHE).[39] It is even able to reduce some d-block metallocenes like ferrocene. Furthermore, in comparison with d-orbitals of transition metals, the radial extension of their 4f-orbitals are really small and limited, which greatly reduces the orbital effects.[40] More specifically, its 4fn electron configurations have almost no effect on its chemical reactivity and its electrostatic interactions require optimizing through ligand geometries. Moreover, the reactivity of the f-block element complexes relies heavily on their sterics. In other words, a sterically saturated structure offers the best stability, and so, both ligand size or metal size can be twisted to modify the reactivity.[40] These special properties allow the following reactions to occur.

I.              Alkyl-like Reactivity

Like alkyl group, the electron-rich ligand of f-block metallocenes can act as a nucleophile during organometallic reactions. For example, it can polymerize double bonds,[41] open rings,[37, 42] etc.

II.            Ligand Cleavage

Especially in the presence of Lewis acids like B(C6F5)3 or Al2Me6, the Cp and other similar ligands can be removed through the following reactions.[43] This indicates that Lewis acids probably can be used to activate f-block metallocene for organometallic reactions like polymerizations.

III.          Insertions

The f-block metallocenes are able to undergo insertion reactions of compounds like carbon monoxide,[44] nitriles or isocyanates.[37]

IV.          Reductivity

(i)            Ordinary reductions

Since the Cp or other similar ligand of f-block metallocenes are very electropositive, it tends to lose one electron and pentamethylcyclopentadiene, which results in the strong reductivity of f-block metallocenes.

(ii)          Sterically induced reduction (SIR)

Sterically crowded complexes like (C5Me5)3Sm are able to provided strong reductivity and so this type of reaction was named as SIR.[45] Due to the strong steric hindrance, one ligand cannot bind to the metal center at the ideal distance and so the complex is not electrostatically stable.[32] Thus, the anion is more inclined to become oxidized and leave the complex. This tendency gives it strong reductivity.

(1) Wilkinson, G.; Birmingham, J. M. J. Am. Chem. Soc. 1954, 76, 6210.

(2) Birmingham, J. M.; Wilkinson, G. J. Am. Chem. Soc. 1956, 78, 42.

(3) Schumann, H.; Meesemarktscheffel, J. A.; Esser, L. Chem. Rev. 1995, 95, 865.

(4) Evans, W. J.; Wayda, A. L. Inorg. Chem. 1980, 19, 2190.


(5) Evans, W. J. In The Chemistry of the Metal-Carbon Bond;  Hartley, F. R., Patai, S., Eds.; John Wiley: New York, 1982.

(6) King, R. B. Coord. Chem. Rev. 1976, 20, 155.


(7) Wolczanski, P. T.; Bercaw, J. E. Acc. Chem. Res. 1980, 11, 121.

(8) Watson, P. L. J. Chem. Soc., Chem. Commun. 1980, 652.


(9) Tilley, T. D.; Anderson, R. A.; Spencer, B.; Ruben, H.; Zalkin, A.; Templeton, D. H. Inorg. Chem. 1980, 19, 2999.


(10) Evans, W. J.; Bloom, I.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. 1981, 103, 6507.


(11) Evans, W. J.; Hughes, L. A.; Hanusa, T. P. J. Am. Chem. Soc. 1984, 106, 4270.


(12) Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. J. Am. Chem. Soc. 219.

(13) Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. J. Am. Chem. Soc. 1990, 112, 2314. 


(14) Evans, W. J.; Chamberlain, L. R.; Ulibarri, T. A.; Ziller, J. W. J. Am. Chem. Soc. 1988, 110, 6423. 


(15) Evans, W. J.; Keyer, R. A.; Rabe, G. W.; Drummond, D. K.; Ziller, J. W. Organometallics 1993, 12, 4664.

(16) Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. J. Am. Chem. Soc. 1988, 110, 6877.

(17) Evans, W. J.; Bloom, I.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. 1983, 105, 1401. 


(18) Evans, W. J.; Giarikos, D. G.; Robledo, C. B.; Leong, V. S.; Ziller, J. W. Organometallics 2001, 20, 5648. 


(19) Recknagel, A.; Stalke, D.; Roesky, H. W.; Edelmann, F. T. Angew. Chem., Int. Ed. Engl. 1989, 28, 445. 


(20) Evans, W. J.; Grate, J. W.; Hughes, L. A.; Zhang, H.; Atwood, J. L. J. Am. Chem. Soc. 1985, 107, 3728. 


(21) Evans, W. J.; Seibel, C. A.; Ziller, J. W. Inorg. Chem. 1998, 37, 770. 


(22) Evans, W. J.; Drummond, D. K. Organometallics 1988, 7, 797. 


(23) Evans, W. J.; Drummond, D. K.; Bott, S. G.; Atwood, J. L. 
Organometallics 1986, 5, 2389. 


(24) Evans, W. J.; Drummond, D. K. J. Am. Chem. Soc. 1986, 108, 
7440. 


(25) Evans, W. J.; Drummond, D. K.; Chamberlain, L. R.; Doedens, 
R. J.; Bott, S. G.; Zhang, H.; Atwood, J. L. J. Am. Chem. Soc.1988, 110, 4983. 


(26) Evans, W. J.; Drummond, D. K. J. Am. Chem. Soc. 1989, 111, 
3329. 


(27) Evans, W. J.; Gonzales, S. L.; Ziller, J. W. J. Am. Chem. Soc.1994, 116, 2600.

(28) Evans, W. J.; Gonzales, S. L.; Ziller, J. W. J. Am. Chem. Soc. 1991, 113, 7423.


(29) Evans, W. J.; Keyer, R. A.; Ziller, J. W. J. Organomet. Chem.1990, 394, 87. 


(30) Evans, W. J.; Ulibarri, T. A. J. Am. Chem. Soc. 1987, 109, 4292.

(31) Evans, W. J.; Nyce, G. W.; Johnston, M. A.; Ziller, J. W. J. Am. Chem. Soc. 2000, 122, 12019.

(32) Evans, W. J.; Davis, B. J. Chem. Rev. 2002, 102, 2119−2136.

(33) Blake, P. C.; Edelstein, N. M.; Hitchcock, P. B.; Kot, W. K.; Lappert, M. F.; Shalimoff, G. V.; Tian, S. J. Organomet. Chem. 2001, 636, 124.

(34) Evans, W. J.; Nyce, G. W.; Ziller, J. W. Organometallics 2001, 20, 5489.

(35) Evans, W. J.; Forrestal, K. J.; Leman, J. T.; Ziller, J. W. Organometallics 1996, 15, 527.

(36) Evans, W. J.; Seibel,C.A.;Ziller, J. W. J. Am. Chem.Soc.1998, 120, 6745.


(37) Evans, W. J.; Forrestal, K. J.; Ziller, J. W. J. Am. Chem. Soc. 1998, 120, 9273.

(38) Evans, W. J. Adv. Organomet. Chem. 1985, 24, 131.

(39) Evans, W. J. Inorg. Chem. 2007, 46, 3435-3449.

(40) Evans, W. J. Polyhedron 1987, 6, 803.


(41) Evans, W. J.; DeCoster, D. M.; Greaves, J. Macromolecules. 1995, 
28, 7929. 


(42) Evans, W. J.; Ulibarri, T. A.; Chamberlain, L. R.; Ziller, J. W.; Alvarez, D. Organometallics 1990, 9, 2124.

(43) Evans, W. J.; Davis, B. L.; Perotti, J. M.; Kozimor, S.; Ziller, J. W. Manuscript in preparation.

(44) Evans, W. J.; Forrestal, K. J.; Ziller, J. W. J. Am. Chem. Soc. 1995, 117, 12635.

(45) Evans, W. J. Coord. Chem. Rev. 2000, 206, 263.

This template should only be used in the user namespace.This template should only be used in the user namespace.

  1. ^ Wilkinson, G.; Birmingham, J. M. J. Am. Chem. Soc. 195476, 6210.
  2. ^ Birmingham, J. M.; Wilkinson, G. J. Am. Chem. Soc. 1956, 78, 42.    
  3. ^ Birmingham, J. M.; Wilkinson, G. J. Am. Chem. Soc. 1956, 78, 42.    
  4. ^ Evans, W. J.; Wayda, A. L. Inorg. Chem. 1980, 19, 2190.