As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Knowledge graphs have emerged as an effective tool for managing and standardizing semistructured domain knowledge in a human- and machine-interpretable way. In terms of graph-based domain applications, such as embeddings and graph neural networks, current research is increasingly taking into account the time-related evolution of the information encoded within a graph. Algorithms and models for stationary and static knowledge graphs are extended to make them accessible for time-aware domains, where time-awareness can be interpreted in different ways. In particular, a distinction needs to be made between the validity period and the traceability of facts as objectives of time-related knowledge graph extensions. In this context, terms and definitions such as dynamic and temporal are often used inconsistently or interchangeably in the literature. Therefore, with this paper we aim to provide a short but well-defined overview of time-aware knowledge graph extensions and thus faciliate future research in this field as well.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.