Nothing Special   »   [go: up one dir, main page]

Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > COMMUNICATION COMPLEXITY:
Reports tagged with communication complexity:
TR16-168 | 2nd November 2016
Eric Blais, Clement Canonne, Tom Gur

Alice and Bob Show Distribution Testing Lower Bounds (They don't talk to each other anymore.)

Revisions: 1

We present a new methodology for proving distribution testing lower bounds, establishing a connection between distribution testing and the simultaneous message passing (SMP) communication model. Extending the framework of Blais, Brody, and Matulef [BBM12], we show a simple way to reduce (private-coin) SMP problems to distribution testing problems. This method ... more >>>


TR16-174 | 7th November 2016
Elchanan Mossel, Sampath Sampath Kannan, Grigory Yaroslavtsev

Linear Sketching over $\mathbb F_2$

Revisions: 5 , Comments: 2

We initiate a systematic study of linear sketching over $\mathbb F_2$. For a given Boolean function $f \colon \{0,1\}^n \to \{0,1\}$ a randomized $\mathbb F_2$-sketch is a distribution $\mathcal M$ over $d \times n$ matrices with elements over $\mathbb F_2$ such that $\mathcal Mx$ suffices for computing $f(x)$ with high ... more >>>


TR17-061 | 3rd April 2017
Anat Ganor, Karthik C. S.

Communication Complexity of Correlated Equilibrium in Two-Player Games

We show a communication complexity lower bound for finding a correlated equilibrium of a two-player game. More precisely, we define a two-player $N \times N$ game called the 2-cycle game and show that the randomized communication complexity of finding a 1/poly($N$)-approximate correlated equilibrium of the 2-cycle game is $\Omega(N)$. For ... more >>>


TR17-071 | 14th April 2017
Young Kun Ko, Arial Schvartzman

Bounds for the Communication Complexity of Two-Player Approximate Correlated Equilibria

Revisions: 1

In the recent paper of~\cite{BR16}, the authors show that, for any constant $10^{-15} > \varepsilon > 0$ the communication complexity of $\varepsilon$-approximate Nash equilibria in $2$-player $n \times n$ games is $n^{\Omega(\varepsilon)}$, resolving the long open problem of whether or not there exists a polylogarithmic communication protocol. In this paper ... more >>>


TR17-151 | 8th October 2017
Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova, Denis Pankratov, Toniann Pitassi, Robert Robere

Stabbing Planes

Revisions: 3

We introduce and develop a new semi-algebraic proof system, called Stabbing Planes that is in the style of DPLL-based modern SAT solvers. As with DPLL, there is only one rule: the current polytope can be subdivided by
branching on an inequality and its "integer negation.'' That is, we can (nondeterministically ... more >>>


TR17-170 | 6th November 2017
Arkadev Chattopadhyay, Michal Koucky, Bruno Loff, Sagnik Mukhopadhyay

Simulation Beats Richness: New Data-Structure Lower Bounds

We develop a technique for proving lower bounds in the setting of asymmetric communication, a model that was introduced in the famous works of Miltersen (STOC'94) and Miltersen, Nisan, Safra and Wigderson (STOC'95). At the core of our technique is a novel simulation theorem: Alice gets a $p \times n$ ... more >>>


TR17-177 | 16th November 2017
Daniel Kane, Roi Livni, Shay Moran, Amir Yehudayoff

On Communication Complexity of Classification Problems

Revisions: 1

This work introduces a model of distributed learning in the spirit of Yao's communication complexity model. We consider a two-party setting, where each of the players gets a list of labelled examples and they communicate in order to jointly perform some learning task. To naturally fit into the framework of ... more >>>


TR18-031 | 15th February 2018
Iftach Haitner, Noam Mazor, Rotem Oshman, Omer Reingold, Amir Yehudayoff

On the Communication Complexity of Key-Agreement Protocols

Revisions: 2

Key-agreement protocols whose security is proven in the random oracle model are an important alternative to the more common public-key based key-agreement protocols. In the random oracle model, the parties and the eavesdropper have access to a shared random function (an "oracle"), but they are limited in the number of ... more >>>


TR18-043 | 22nd February 2018
Andrei Romashchenko, Marius Zimand

An operational characterization of mutual information in algorithmic information theory

Revisions: 2

We show that the mutual information, in the sense of Kolmogorov complexity, of any pair of strings
$x$ and $y$ is equal, up to logarithmic precision, to the length of the longest shared secret key that
two parties, one having $x$ and the complexity profile of the pair and the ... more >>>


TR18-079 | 19th April 2018
Jayadev Acharya, Clement Canonne, Himanshu Tyagi

Distributed Simulation and Distributed Inference

Revisions: 1

Independent samples from an unknown probability distribution $\mathbf{p}$ on a domain of size $k$ are distributed across $n$ players, with each player holding one sample. Each player can communicate $\ell$ bits to a central referee in a simultaneous message passing (SMP) model of communication to help the referee infer a ... more >>>


TR19-001 | 5th January 2019
Dmitry Itsykson, Alexander Knop, Andrei Romashchenko, Dmitry Sokolov

On OBDD-based algorithms and proof systems that dynamically change order of variables

In 2004 Atserias, Kolaitis and Vardi proposed OBDD-based propositional proof systems that prove unsatisfiability of a CNF formula by deduction of identically false OBDD from OBDDs representing clauses of the initial formula. All OBDDs in such proofs have the same order of variables. We initiate the study of OBDD based ... more >>>


TR19-027 | 1st March 2019
Mark Bun, Nikhil Mande, Justin Thaler

Sign-Rank Can Increase Under Intersection

The communication class $UPP^{cc}$ is a communication analog of the Turing Machine complexity class $PP$. It is characterized by a matrix-analytic complexity measure called sign-rank (also called dimension complexity), and is essentially the most powerful communication class against which we know how to prove lower bounds.

For a communication problem ... more >>>


TR19-101 | 24th July 2019
Amit Chakrabarti, Prantar Ghosh

Streaming Verification of Graph Computations via Graph Structure

We give new algorithms in the annotated data streaming setting---also known as verifiable data stream computation---for certain graph problems. This setting is meant to model outsourced computation, where a space-bounded verifier limited to sequential data access seeks to overcome its computational limitations by engaging a powerful prover, without needing to ... more >>>


TR19-103 | 7th August 2019
Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, Toniann Pitassi

Query-to-Communication Lifting Using Low-Discrepancy Gadgets

Revisions: 2

Lifting theorems are theorems that relate the query complexity of a function $f:\left\{ 0,1 \right\}^n\to \left\{ 0,1 \right\}$ to the communication complexity of the composed function $f\circ g^n$, for some “gadget” $g:\left\{ 0,1 \right\}^b\times \left\{ 0,1 \right\}^b\to \left\{ 0,1 \right\}$. Such theorems allow transferring lower bounds from query complexity to ... more >>>


TR19-143 | 25th October 2019
Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rashtchian

Equivalence of Systematic Linear Data Structures and Matrix Rigidity

Recently, Dvir, Golovnev, and Weinstein have shown that sufficiently strong lower bounds for linear data structures would imply new bounds for rigid matrices. However, their result utilizes an algorithm that requires an $NP$ oracle, and hence, the rigid matrices are not explicit. In this work, we derive an equivalence between ... more >>>


TR20-021 | 21st February 2020
Rahul Ilango, Bruno Loff, Igor Carboni Oliveira

NP-Hardness of Circuit Minimization for Multi-Output Functions

Can we design efficient algorithms for finding fast algorithms? This question is captured by various circuit minimization problems, and algorithms for the corresponding tasks have significant practical applications. Following the work of Cook and Levin in the early 1970s, a central question is whether minimizing the circuit size of an ... more >>>


TR20-048 | 16th April 2020
Shachar Lovett, Raghu Meka, Jiapeng Zhang

Improved lifting theorems via robust sunflowers

Lifting theorems are a generic way to lift lower bounds in query complexity to lower bounds in communication complexity, with applications in diverse areas, such as combinatorial optimization, proof complexity, game theory. Lifting theorems rely on a gadget, where smaller gadgets give stronger lower bounds. However, existing proof techniques are ... more >>>


TR20-100 | 6th July 2020
Amit Chakrabarti, Prantar Ghosh, Justin Thaler

Streaming Verification for Graph Problems: Optimal Tradeoffs and Nonlinear Sketches

We study graph computations in an enhanced data streaming setting, where a space-bounded client reading the edge stream of a massive graph may delegate some of its work to a cloud service. We seek algorithms that allow the client to verify a purported proof sent by the cloud service that ... more >>>


TR20-111 | 24th July 2020
Ian Mertz, Toniann Pitassi

Lifting: As Easy As 1,2,3

Revisions: 1

Query-to-communication lifting theorems translate lower bounds on query complexity to lower bounds for the corresponding communication model. In this paper, we give a simplified proof of deterministic lifting (in both the tree-like and dag-like settings). Whereas previous proofs used sophisticated Fourier analytic techniques, our proof uses elementary counting together with ... more >>>


TR20-114 | 22nd July 2020
Anup Bhattacharya, Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, Manaswi Paraashar

Disjointness through the Lens of Vapnik–Chervonenkis Dimension: Sparsity and Beyond

The disjointness problem - where Alice and Bob are given two subsets of $\{1, \dots, n\}$ and they have to check if their sets intersect - is a central problem in the world of communication complexity. While both deterministic and randomized communication complexities for this problem are known to be ... more >>>


TR20-119 | 1st August 2020
Nikhil Mande, Swagato Sanyal

On parity decision trees for Fourier-sparse Boolean functions

We study parity decision trees for Boolean functions. The motivation of our study is the log-rank conjecture for XOR functions and its connection to Fourier analysis and parity decision tree complexity. Our contributions are as follows. Let $f : \mathbb{F}_2^n \to \{-1, 1\}$ be a Boolean function with Fourier support ... more >>>


TR21-006 | 18th January 2021
Susanna de Rezende, Jakob Nordström, Marc Vinyals

How Limited Interaction Hinders Real Communication (and What It Means for Proof and Circuit Complexity)

We obtain the first true size-space trade-offs for the cutting planes proof system, where the upper bounds hold for size and total space for derivations with constant-size coefficients, and the lower bounds apply to length and formula space (i.e., number of inequalities in memory) even for derivations with exponentially large ... more >>>


TR21-027 | 24th February 2021
Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena, Zhao Song, Huacheng Yu

Almost Optimal Super-Constant-Pass Streaming Lower Bounds for Reachability

We give an almost quadratic $n^{2-o(1)}$ lower bound on the space consumption of any $o(\sqrt{\log n})$-pass streaming algorithm solving the (directed) $s$-$t$ reachability problem. This means that any such algorithm must essentially store the entire graph. As corollaries, we obtain almost quadratic space lower bounds for additional fundamental problems, including ... more >>>


TR21-051 | 8th April 2021
Klim Efremenko, Gillat Kol, Raghuvansh Saxena

Binary Interactive Error Resilience Beyond $1/8$ (or why $(1/2)^3 > 1/8$)

Interactive error correcting codes are codes that encode a two party communication protocol to an error-resilient protocol that succeeds even if a constant fraction of the communicated symbols are adversarially corrupted, at the cost of increasing the communication by a constant factor. What is the largest fraction of corruptions that ... more >>>


TR21-065 | 5th May 2021
Nikhil Mande, Swagato Sanyal

One-way communication complexity and non-adaptive decision trees

Revisions: 1

We study the relationship between various one-way communication complexity measures of a composed function with the analogous decision tree complexity of the outer function. We consider two gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs. Let $IP$ denote Inner Product on ... more >>>


TR21-068 | 8th May 2021
Marcel Dall'Agnol, Tom Gur, Subhayan Roy Moulik, Justin Thaler

Quantum Proofs of Proximity

We initiate the systematic study of QMA algorithms in the setting of property testing, to which we refer as QMA proofs of proximity (QMAPs). These are quantum query algorithms that receive explicit access to a sublinear-size untrusted proof and are required to accept inputs having a property $\Pi$ and reject ... more >>>


TR21-100 | 11th July 2021
Christian Ikenmeyer, Balagopal Komarath, Nitin Saurabh

Karchmer-Wigderson Games for Hazard-free Computation

Revisions: 1

We present a Karchmer-Wigderson game to study the complexity of hazard-free formulas. This new game is both a generalization of the monotone Karchmer-Wigderson game and an analog of the classical Boolean Karchmer-Wigderson game. Therefore, it acts as a bridge between the existing monotone and general games.

Using this game, we ... more >>>


TR21-127 | 30th August 2021
Ron D. Rothblum, Michael Ezra

Small Circuits Imply Efficient Arthur-Merlin Protocols

Revisions: 1

The inner product function $\langle x,y \rangle = \sum_i x_i y_i \bmod 2$ can be easily computed by a (linear-size) ${AC}^0(\oplus)$ circuit: that is, a constant depth circuit with AND, OR and parity (XOR) gates. But what if we impose the restriction that the parity gates can only be on ... more >>>


TR21-181 | 30th December 2021
Oded Goldreich

The KW Games as a Teaser

This is a purely pedagogical text.
We advocate using KW-games as a teaser (or ``riddle'') for a complexity theoretic course.
In particular, stating the KW-game for a familiar NP-complete problem such as 3-Colorability and asking to prove that it requires more than polylogarithmic communication poses a seemingly tractable question ... more >>>


TR22-016 | 15th February 2022
Artur Ignatiev, Ivan Mihajlin, Alexander Smal

Super-cubic lower bound for generalized Karchmer-Wigderson games

Revisions: 1

In this paper, we prove a super-cubic lower bound on the size of a communication protocol for generalized Karchmer-Wigderson game for some explicit function $f: \{0,1\}^n\to \{0,1\}^{\log n}$. Lower bounds for original Karchmer-Wigderson games correspond to De Morgan formula lower bounds, thus the best known size lower bound is cubic. ... more >>>


TR22-019 | 17th February 2022
Guangxu Yang, Jiapeng Zhang

Simulation Methods in Communication Lower Bounds, Revisited

The notion of lifting theorems is a generic method to lift hardness of one-party functions to two-party lower bounds in communication model. It has many applications in different areas such as proof complexity, game theory, combinatorial optimization. Among many lifting results, a central idea is called Raz-McKenize simulation (FOCS 1997). ... more >>>


TR22-050 | 12th April 2022
Klim Efremenko, Bernhard Haeupler, Yael Kalai, Pritish Kamath, Gillat Kol, Nicolas Resch, Raghuvansh Saxena

Circuits Resilient to Short-Circuit Errors

Given a Boolean circuit $C$, we wish to convert it to a circuit $C'$ that computes the same function as $C$ even if some of its gates suffer from adversarial short circuit errors, i.e., their output is replaced by the value of one of their inputs [KLM97]. Can we ... more >>>


TR22-118 | 23rd August 2022
Huacheng Yu

Strong XOR Lemma for Communication with Bounded Rounds

In this paper, we prove a strong XOR lemma for bounded-round two-player randomized communication. For a function $f:\mathcal{X}\times \mathcal{Y}\rightarrow\{0,1\}$, the $n$-fold XOR function $f^{\oplus n}:\mathcal{X}^n\times \mathcal{Y}^n\rightarrow\{0,1\}$ maps $n$ input pairs $(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$ to the XOR of the $n$ output bits $f(X_1,Y_1)\oplus \cdots \oplus f(X_n, Y_n)$. We prove that if every ... more >>>


TR23-015 | 20th February 2023
Scott Aaronson, Harry Buhrman, William Kretschmer

A Qubit, a Coin, and an Advice String Walk Into a Relational Problem

Revisions: 1

Relational problems (those with many possible valid outputs) are different from decision problems, but it is easy to forget just how different. This paper initiates the study of FBQP/qpoly, the class of relational problems solvable in quantum polynomial-time with the help of polynomial-sized quantum advice, along with its analogues for ... more >>>


TR23-084 | 31st May 2023
Itai Dinur

Time-Space Lower Bounds for Bounded-Error Computation in the Random-Query Model

Revisions: 1

The random-query model was introduced by Raz and Zhan at ITCS 2020 as a new model of space-bounded computation. In this model, a branching program of length $T$ and width $2^{S}$ attempts to compute a function $f:\{0,1\}^n \rightarrow \{0,1 \}$. However, instead of receiving direct access to the input bits ... more >>>


TR23-085 | 4th June 2023
Ari Karchmer

Average-Case PAC-Learning from Nisan's Natural Proofs

Revisions: 2

Carmosino et al. (2016) demonstrated that natural proofs of circuit lower bounds imply algorithms for learning circuits with membership queries over the uniform distribution. Indeed, they exercised this implication to obtain a quasi-polynomial time learning algorithm for ${AC}^0[p]$ circuits, for any prime $p$, by leveraging the existing natural proofs from ... more >>>


TR23-137 | 10th September 2023
Mi-Ying Huang, Xinyu Mao, Guangxu Yang, Jiapeng Zhang

Communication Lower Bounds of Key-Agreement Protocols via Density Increment Arguments

Constructing key-agreement protocols in the random oracle model (ROM) is a viable method to assess the feasibility of developing public-key cryptography within Minicrypt. Unfortunately, as shown by Impagliazzo and Rudich (STOC 1989) and Barak and Mahmoody (Crypto 2009), such protocols can only guarantee limited security: any $\ell$-query protocol can be ... more >>>


TR23-157 | 31st October 2023
Vladimir Podolskii, Dmitrii Sluch

One-Way Communication Complexity of Partial XOR Functions

Revisions: 1

Boolean function $F(x,y)$ for $x,y \in \{0,1\}^n$ is an XOR function if $F(x,y) = f(x\oplus y)$ for some function $f$ on $n$ input bits, where $\oplus$ is a bit-wise XOR. XOR functions are relevant in communication complexity, partially for allowing Fourier analytic technique. For total XOR functions it is known ... more >>>


TR23-159 | 31st October 2023
Guangxu Yang, Jiapeng Zhang

Communication Lower Bounds for Collision Problems via Density Increment Arguments

Collision problems are important problems in complexity theory and cryptography with diverse applications. Previous fruitful works have mainly focused on query models. Driven by various applications, several works by Bauer, Farshim and Mazaheri (CRYPTO 2018), Itsykson and Riazanov (CCC 2021), Göös and Jain (RANDOM 2022) independently proposed the communication version ... more >>>


TR23-164 | 5th November 2023
Shuo Wang, Guangxu Yang, Jiapeng Zhang

Communication Complexity of Set-Intersection Problems and Its Applications

Set-disjointness is one of the most fundamental and widely studied problems in the area of communication complexity. In this problem, each party $i$ receives a set $S_i\subseteq [N]$. The goal is to determine whether $\bigcap S_i$ is empty via communication between players. The decision version simply asks if the common ... more >>>


TR23-196 | 7th December 2023
Huacheng Yu, Wei Zhan

Sampling, Flowers and Communication

Given a distribution over $[n]^n$ such that any $k$ coordinates need $k/\log^{O(1)}n$ bits of communication to sample, we prove that any map that samples this distribution from uniform cells requires locality $\Omega(\log(n/k)/\log\log(n/k))$. In particular, we show that for any constant $\delta>0$, there exists $\varepsilon=2^{-\Omega(n^{1-\delta})}$ such that $\Omega(\log n/\log\log n)$ non-adaptive ... more >>>


TR24-008 | 17th January 2024
Pavel Hrubes

Hard submatrices for non-negative rank and communication complexity }

Revisions: 1

Given a non-negative real matrix $M$ of non-negative rank at least $r$, can we witness this fact by a small submatrix of $M$? While Moitra (SIAM J. Comput. 2013) proved that this cannot be achieved exactly, we show that such a witnessing is possible approximately: an $m\times n$ matrix always ... more >>>


TR24-070 | 10th April 2024
Xinyu Mao, Guangxu Yang, Jiapeng Zhang

Gadgetless Lifting Beats Round Elimination: Improved Lower Bounds for Pointer Chasing

The notion of query-to-communication lifting theorems is a generic framework to convert query lower bounds into two-party communication lower bounds. Though this framework is very generic and beautiful, it has some inherent limitations such as it only applies to lifted functions. In order to address this issue, we propose gadgetless ... more >>>


TR24-071 | 10th April 2024
Yahel Manor, Or Meir

Lifting with Inner Functions of Polynomial Discrepancy

Lifting theorems are theorems that bound the communication complexity
of a composed function $f\circ g^{n}$ in terms of the query complexity
of $f$ and the communication complexity of $g$. Such theorems
constitute a powerful generalization of direct-sum theorems for $g$,
and have seen numerous applications in recent years.

We prove ... more >>>


TR24-112 | 3rd July 2024
Klim Efremenko, Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena

The Rate of Interactive Codes is Bounded Away from 1

Kol and Raz [STOC 2013] showed how to simulate any alternating two-party communication protocol designed to work over the noiseless channel, by a protocol that works over a stochastic channel that corrupts each sent symbol with probability $\epsilon>0$ independently, with only a $1+\mathcal{O}(\sqrt{\H(\epsilon)})$ blowup to the communication. In particular, this ... more >>>


TR24-188 | 21st November 2024
Edward Pyne, Nathan Sheffield, William Wang

Catalytic Communication

The study of space-bounded computation has drawn extensively from ideas and results in the field of communication complexity. Catalytic Computation (Buhrman, Cleve, Koucký, Loff and Speelman, STOC 2013) studies the power of bounded space augmented with a pre-filled hard drive that can be used non-destructively during the computation. Presently, many ... more >>>




ISSN 1433-8092 | Imprint