Inference on Causal Effects in a Generalized Regression Kink Design
David Card,
David S. Lee,
Zhuan Pei and
Andrea Weber
Additional contact information
David S. Lee: Princeton University
No 15-218, Upjohn Working Papers from W.E. Upjohn Institute for Employment Research
Abstract:
We consider nonparametric identification and estimation in a nonseparable model where a continuous regressor of interest is a known, deterministic, but kinked function of an observed assignment variable. This design arises in many institutional settings where a policy variable (such as weekly unemployment benefits) is determined by an observed but potentially endogenous assignment variable (like previous earnings). We provide new results on identification and estimation for these settings, and apply our results to obtain estimates of the elasticity of joblessness with respect to UI benefit rates. We characterize a broad class of models in which a sharp "Regression Kink Design" (RKD, or RK Design) identifies a readily interpretable treatment-on-the-treated parameter (Florens et al. (2008)). We also introduce a "fuzzy regression kink design" generalization that allows for omitted variables in the assignment rule, noncompliance, and certain types of measurement errors in the observed values of the assignment variable and the policy variable. Our identifying assumptions give rise to testable restrictions on the distributions of the assignment variable and predetermined covariates around the kink point, similar to the restrictions delivered by Lee (2008) for the regression discontinuity design. We then use a fuzzy RKD approach to study the effect of unemployment insurance benefits on the duration of joblessness in Austria, where the benefit schedule has kinks at the minimum and maximum benefit level. Our preferred estimates suggest that changes in UI benefit generosity exert a relatively large effect on the duration of joblessness of both low-wage and high-wage UI recipients in Austria.
Keywords: Regression Discontinuity Design; Regression Kink Design; Treatment Effects; Nonseparable Models; Nonparametric Estimation (search for similar items in EconPapers)
JEL-codes: C13 C14 C31 (search for similar items in EconPapers)
Date: 2015-01
New Economics Papers: this item is included in nep-ecm
References: Add references at CitEc
Citations: View citations in EconPapers (184)
Downloads: (external link)
http://research.upjohn.org/cgi/viewcontent.cgi?art ... ext=up_workingpapers (application/pdf)
This material is copyrighted. Permission is required to reproduce any or all parts.
Related works:
Journal Article: Inference on Causal Effects in a Generalized Regression Kink Design (2015)
Working Paper: Inference on Causal Effects in a Generalized Regression Kink Design (2015)
Working Paper: Inference on Causal Effects in a Generalized Regression Kink Design (2015)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:upj:weupjo:15-218
Access Statistics for this paper
More papers in Upjohn Working Papers from W.E. Upjohn Institute for Employment Research 300 S. Westnedge Ave. Kalamazoo, MI 49007 USA. Contact information at EDIRC.
Bibliographic data for series maintained by ().