Electrochemical Sensors for Clinic Analysis
<p>Clinical analysis procedures based on electrochemical sensors.</p> ">
<p>The schematic of: (a) liquid junction ISE, (b) solid-contact ISE.</p> ">
<p>The principle schematic of: (a) first generation amperometric biosensors, (b) second generation amperometric biosensors.</p> ">
<p>The extraction of glucose by reverse iontophoresis.</p> ">
<p>The structure of “Sandwich” DNA sensors.</p> ">
Abstract
:1. Introduction
2. Electrochemical sensors
2.1. Principles
2.1.1. Potentiometric sensors
2.1.2. Amperometric sensors
2.1.3. Other types of electrochemical measurements
2.2. Fabrication design
3. Applications of electrochemical sensors on clinic analysis
3.1. Metabolites
3.1.1. Glucose
Principle of electrochemical reaction
- H2O2 → 2H+ + O2 +2 e−
- GDH(ox)+ d-glucose → GDH(red) + δ-glucolactone
- Mediator(ox) + GDH(red) →Mediator(red)+ GDH(ox)
- Mediator(red) → Mediator(ox) + e−
Immobilization of enzyme
Nanomaterials
PQQ-GDH enzyme
Nonenzymatic glucose sensor
Noninvasive glucose monitoring
Continuous monitoring of blood glucose in vivo
3.1.2. Cholesterol
3.1.3. Uric acid
- Mediator(red) → Mediator(ox) + 2e−
3.1.4. Lactate
3.2. Blood gases
3.2.1. pO2 sensors
- O2 + 2H2O + 4e− → 4OH−
- 4Ag + 4Cl− → 4AgCl+ 4e−
3.2.2. pCO2 sensors
- CO2 + H2O → H2CO3
- H2CO3 → H+ + HCO3−
- HCO3− → H+ + CO32−
3.2.3. Transcutaneous blood gas monitoring
3.2.4. Intravascular sensors
3.3. Electrolytes
3.4. DNA
3.4.1. Principle of electrochemical DNA sensors
3.4.2. Direct DNA detection
3.4.3. Indirect DNA detection
3.5. Immunoassay
3.5.1. Amperometric immunosensors
3.5.2. Potentiometric immunosensors
3.5.3. Impedimetric immunosensors
3.5.4. Capacitative immunosensors
3.6. Other analyses
3.6.1. Haemoglobin
- Hb heme Fe(III) + e− ↔ Hb heme Fe(II)
3.6.2. Blood ketones
3.6.3. Nitric oxide
4. Future directions
Acknowledgments
References
- Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Acad. Sci. 1962, 102, 29–45. [Google Scholar]
- Daniel, S.; Rao, T.P.; Rao, K.S.; Rani, S.U.; Naidu, G.R.K.; Lee, H.-Y.; Kawai, T. A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens. Actuat. B Chem. 2007, 122, 672–682. [Google Scholar]
- Drummond, T.G.; Hill, M.G.; Barton, J.K. Electrochemical DNA sensors. Nat. Biotechnol. 2003, 21, 1192–1199. [Google Scholar]
- DOrazio, P. Biosensors in clinical chemistry. Clin. Chim. Acta. 2003, 334, 41–69. [Google Scholar]
- Marquette, C.A.; Blum, L.J. State of the art and recent advances in immunoanalytical systems. Biosens. Bioelectron. 2006, 21, 1424–1433. [Google Scholar]
- Stefan, R.I.; van Staden, J.F.; Aboul-Enein, H.Y. Immunosensors in clinical analysis. Fresenius J. Anal. Chem. 2000, 366, 659–668. [Google Scholar]
- Rivas, G.A.; Rubianes, M.D.; Rodriguez, M.C.; Ferreyra, N.F.; Luque, G.L.; Pedano, M.L.; Miscoria, S.A.; Parrado, C. Carbon nanotubes for electrochemical biosensing. Talanta 2007, 74, 291–307. [Google Scholar]
- Vestergaard, M.; Kerman, K.; Tamiya, E. An overview of label-free electrochemical protein sensors. Sensors 2007, 7, 3442–3458. [Google Scholar]
- Janata, J. Principles of Chemical Sensors; Hercules, D., Ed.; Plenum Press: New York, 1989; p. 81. [Google Scholar]
- Hart, J.P.; Crew, A.; Crouch, E.; Honeychurch, K.C.; Pemberton, R.M. Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and Industrial analyses. Anal. Lett. 2004, 37, 789–830. [Google Scholar]
- Newman, J.D.; Turner, A.P.F. Home blood glucose biosensors: a commercial perspective. Biosens. Bioelectron. 2005, 20, 2435–2453. [Google Scholar]
- Updike, S.J.; Hicks, G.P. The Enzyme Electrode. Nature 1967, 214, 986–988. [Google Scholar]
- Sung, W.J.; Bae, Y.H. A glucose oxidase electrode based on polypyrrole with polyanion PEG/enzyme conjugate dopant. Biosens. Bioelectron. 2003, 18, 1231–1239. [Google Scholar]
- Yao, T.; Takashima, K. Amperometric biosensor with a composite membrane of sol-gel derived enzyme film and electrochemically generated poly(1,2-diaminobenzene) film. Biosens. Bioelectron. 1998, 13, 67–73. [Google Scholar]
- Li, G.; Wang, Y.; Xu, H. A hydrogen peroxide sensor prepared by electropolymerization of pyrrole based on screen-printed carbon paste electrodes. Sensors 2007, 7, 239–250. [Google Scholar]
- Rahman, A.; Kumar, P.; Park, D.-S.; Shim, Y.-B. Electrochemical sensors based on organic conjugated polymers. Sensors 2008, 8, 118–141. [Google Scholar]
- Ohnuki, H.; Saiki, T.; Kusakari, A.; Endo, H.; Ichihara, M.; Izumi, M. Incorporation of glucose oxidase into langmuir-blodgett films based on prussian blue applied to amperometric glucose biosensor. Langmuir 2007, 23, 4675–4681. [Google Scholar]
- Caseli, L.; dos Santos, D.S., Jr; Foschini, M.; Goncalves, D.; Oliveira, O.N., Jr. The effect of the layer structure on the activity of immobilized enzymes in ultrathin films. J. Colloid Interface Sci. 2006, 303, 326–331. [Google Scholar]
- Mashazi, P.N.; Ozoemena, K.I.; Nyokong, T. Tetracarboxylic acid cobalt phthalocyanine SAM on gold: Potential applications as amperometric sensor for H2O2 and fabrication of glucose biosensor. Electrochim. Acta 2006, 52, 177–186. [Google Scholar]
- Sun, Y.; Yan, F.; Yang, W.; Sun, C. Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Biomaterials 2006, 27, 4042–4049. [Google Scholar]
- Zhang, S.; Yang, W.; Niu, Y.; Li, Y.; Zhang, M.; Sun, C. Construction of glucose biosensor based on sorption of glucose oxidase onto multilayers of polyelectrolyte/nanoparticles. Anal. Bioanal. Chem. 2006, 384, 736–741. [Google Scholar]
- Liu, G.; Lin, Y. Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochem. Commun. 2006, 8, 251–256. [Google Scholar]
- Chen, P.C.; Hsieh, B.C.; Chen, R.L.C.; Wang, T.Y.; Hsiao, H.Y.; Cheng, T.J. Characterization of natural chitosan membranes from the carapace of the soldier crab Mictyris brevidactylus and its application to immobilize glucose oxidase in amperometric flow-injection biosensing system. Bioelectrochemistry 2006, 68, 72–80. [Google Scholar]
- Wang, J.; Carlisle, J.A. Covalent immobilization of glucose oxidase on conducting ultrananocrystalline diamond thin films. Diamond Relat. Mater. 2006, 15, 279–284. [Google Scholar]
- Florescu, M.; Barsan, M.; Pauliukaite, R.; Brett, C.M.A. Development and application of oxysilane sol-gel electrochemical glucose biosensors based on cobalt hexacyanoferrate modified carbon film electrodes. Electroanalysis 2007, 19, 220–226. [Google Scholar]
- Li, J.; Yu, J.; Zhao, F.; Zeng, B. Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing. Anal. Chim. Acta 2007, 587, 33–40. [Google Scholar]
- Dai, Z.H.; Ni, J.; Huang, X.H.; Lu, G.F.; Bao, J.C. Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix. Bioelectrochemistry 2007, 70, 250–256. [Google Scholar]
- Kan, J.; Mu, S.; Xue, H.; Chen, H. Effects of conducting polymers on immobilized galactose oxidase. Synth. Met. 1997, 87, 205–209. [Google Scholar]
- Poet, P.D.T.d.; Miyamoto, S.; Murakami, T.; Kimura, J.; Karube, I. Direct electron transfer with glucose oxidase immobilized in an electropolymerized poly-N-methylpyrrole film on a gold microelectrode. Anal. Chim. Acta 1990, 235, 255–264. [Google Scholar]
- Gerard, M.; Chaubey, A.; Malhotra, B.D. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17, 345–359. [Google Scholar]
- Li, G.; Zheng, J.; Ma, X.; Sun, Y.; Fu, J.; Wu, G. Development of QCM trimethylamine sensor based on water soluble polyaniline. Sensors 2007, 7, 2378–2388. [Google Scholar]
- Tsujimoto, M.; Yabutani, T.; Sano, A.; Tani, Y.; Murotani, H.; Mishima, Y.; Maruyama, K.; Yasuzawa, M.; Motonaka, J. Characterization of a glucose sensor prepared by electropolymerization of pyrroles containing a tris-bipyridine osmium complex. Anal. Sci. 2007, 23, 59–63. [Google Scholar]
- Borole, D.D.; Kapadi, U.R.; Mahulikar, P.P.; Hundiwale, D.G. Glucose oxidase electrodes of polyaniline, poly(o-anisidine) and their co-polymer as a biosensor: A comparative study. J. Mater. Sci. 2007, 42, 4947–4953. [Google Scholar]
- Deng, C.; Li, M.; Xie, Q.; Liu, M.; Yang, Q.; Xiang, C.; Yao, S. Construction as well as EQCM and SECM characterizations of a novel Nafion/glucose oxidase-glutaraldehyde/poly(thionine) /Au enzyme electrode for glucose sensing. Sens. Actuat. B Chem. 2007, 122, 148–157. [Google Scholar]
- Pan, X.; Kan, J.; Yuan, L. Polyaniline glucose oxidase biosensor prepared with template process. Sens. Actuat. B Chem. 2004, 102, 325–330. [Google Scholar]
- Cosnier, S. Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens. Bioelectron. 1999, 14, 443–456. [Google Scholar]
- Arai, G.; Shoji, K.; Yasumori, I. Electrochemical characteristics of glucose oxidase immobilized in poly(quinone) redox polymers. J. Electroanal. Chem. 2006, 591, 1–6. [Google Scholar]
- Shan, D.; He, Y.; Wang, S.; Xue, H.; Zheng, H. A porous poly(acrylonitrile-co-acrylic acid) film-based glucose biosensor constructed by electrochemical entrapment. Anal. Biochem. 2006, 356, 215–221. [Google Scholar]
- Ho, W.J.; Yuan, C.J.; Reiko, O. Application of SiO2-poly(dimethylsiloxane) hybrid material in the fabrication of amperometric biosensor. Anal. Chim. Acta 2006, 572, 248–252. [Google Scholar]
- Li, M.; Deng, C.; Xie, Q.; Yang, Y.; Yao, S. Electrochemical quartz crystal impedance study on immobilization of glucose oxidase in a polymer grown from dopamine oxidation at an Au electrode for glucose sensing. Electrochim. Acta 2006, 51, 5478–5486. [Google Scholar]
- Mugweru, A.; Clark, B.L.; Pishko, M.V. Electrochemical redundant microsensor arrays for glucose monitoring with patterned polymer films. Electroanalysis 2007, 19, 453–458. [Google Scholar]
- Mitala, J.J., Jr; Michael, A.C. Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel. Anal. Chim. Acta 2006, 556, 326–332. [Google Scholar]
- Huang, J.; Yang, Y.; Shi, H.; Song, Z.; Zhao, Z.; Anzai, J.I.; Osa, T.; Chen, Q. Multi-walled carbon nanotubes-based glucose biosensor prepared by a layer-by-layer technique. Mater. Sci. Eng., B 2006, 26, 113–117. [Google Scholar]
- Zhou, Q.; Xie, Q.; Fu, Y.; Su, Z.; Jia, X.; Yao, S. Electrodeposition of carbon nanotubes -Chitosan - Glucose oxidase biosensing composite films triggered by reduction of p-benzoquinone or H2O2. J. Phys. Chem. B 2007, 111, 11276–11284. [Google Scholar]
- Sljukic, B.; Banks, C.E.; Salter, C.; Crossley, A.; Compton, R.G. Electrochemically polymerised composites of multi-walled carbon nanotubes and poly(vinylferrocene) and their use as modified electrodes: Application to glucose sensing. Analyst 2006, 131, 670–677. [Google Scholar]
- Timur, S.; Anik, U.; Odaci, D.; Gorton, L. Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes. Electrochem. Commun. 2007, 9, 1810–1815. [Google Scholar]
- Liu, Y.; Wang, M.; Zhao, F.; Xu, Z.; Dong, S. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens. Bioelectron. 2005, 21, 984–988. [Google Scholar]
- Yogeswaran, U.; Chen, S.-M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 2008, 8, 290–313. [Google Scholar]
- Rubianes, M.D.; Rivas, G.A. Dispersion of multi-wall carbon nanotubes in polyethylenimine: A new alternative for preparing electrochemical sensors. Electrochem. Commun. 2007, 9, 480–484. [Google Scholar]
- Rivas, G.A.; Rubianes, M.D.; Pedano, M.L.; Ferreyra, N.F.; Luque, G.L.; Rodriguez, M.C.; Miscoria, S.A. Carbon nanotubes paste electrodes. A new alternative for the development of electrochemical sensors. Electroanalysis 2007, 19, 823–831. [Google Scholar]
- Chen, J.; Burrell, A.K.; Collis, G.E.; Officer, D.L.; Swiegers, G.F.; Too, C.O.; Wallace, G.G. Preparation, characterisation and biosensor application of conducting polymers based on ferrocene substituted thiophene and terthiophene. Electrochimica Acta 2002, 47, 2715–2724. [Google Scholar]
- Wu, L.; Zhang, X.; Ju, H. Amperometric glucose sensor based on catalytic reduction of dissolved oxygen at soluble carbon nanofiber. Biosens. Bioelectron. 2007, 23, 479–484. [Google Scholar]
- Shin, C.; Shin, W.; Hong, H.G. Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor. Electrochim. Acta 2007, 53, 720–728. [Google Scholar]
- Sun, Y.; Bai, Y.; Yang, W.; Sun, C. Controlled multilayer films of sulfonate-capped gold nanoparticles/thionine used for construction of a reagentless bienzymatic glucose biosensor. Electrochim. Acta. 2007, 52, 7352–7361. [Google Scholar]
- Zhao, W.; Xu, J.J.; Shi, C.G.; Chen, H.Y. Fabrication, characterization and application of gold nano-structured film. Electrochem. Commun. 2006, 8, 773–778. [Google Scholar]
- Scavetta, E.; Stipa, S.; Tonelli, D. Electrodeposition of a nickel-based hydrotalcite on Pt nanoparticles for ethanol and glucose sensing. Electrochem. Commun. 2007, 9, 2838–2842. [Google Scholar]
- Chu, X.; Duan, D.; Shen, G.; Yu, R. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta 2007, 71, 2040–2047. [Google Scholar]
- Male, K.B.; Hrapovic, S.; Luong, J.H.T. Electrochemically-assisted deposition of oxidases on platinum nanoparticle/multi-walled carbon nanotube-modified electrodes. Analyst 2007, 132, 1254–1261. [Google Scholar]
- Yang, M.; Yang, Y.; Liu, Y.; Shen, G.; Yu, R. Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens. Bioelectron. 2006, 21, 1125–1131. [Google Scholar]
- Cui, H.F.; Ye, J.S.; Zhang, W.D.; Li, C.M.; Luong, J.H.T.; Sheu, F.S. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites. Anal. Chim. Acta 2007, 594, 175–183. [Google Scholar]
- Qu, F.; Yang, M.; Shen, G.; Yu, R. Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis. Biosens. Bioelectron. 2007, 22, 1749–1755. [Google Scholar]
- Xie, J.; Wang, S.; Aryasomayajula, L.; Varadan, V.K. Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing. Nanotechnology 2007, 18. [Google Scholar]
- Li, J.; Lin, X. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens. Bioelectron. 2007, 22, 2898–2905. [Google Scholar]
- Xu, Q.; Zhao, Y.; Xu, J.Z.; Zhu, J.J. Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor. Sens. Actuat. B Chem. 2006, 114, 379–386. [Google Scholar]
- Shen, J.; Dudik, L.; Liu, C.C. An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sens. Actuat. B Chem. 2007, 125, 106–113. [Google Scholar]
- Yang, H.; Zhu, Y. A high performance glucose biosensor enhanced via nanosized SiO2. Anal. Chim. Acta 2005, 554, 92–97. [Google Scholar]
- Zhao, W.; Xu, J.J.; Qiu, Q.Q.; Chen, H.Y. Nanocrystalline diamond modified gold electrode for glucose biosensing. Biosens. Bioelectron. 2006, 22, 649–655. [Google Scholar]
- Ekanayake, E.M.I.M.; Preethichandra, D.M.G.; Kaneto, K. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosens. Bioelectron. 2007, 23, 107–113. [Google Scholar]
- Liu, L.; Jia, N.q.; Zhou, Q.; Yan, M.m.; Jiang, Z.y. Electrochemically fabricated nanoelectrode ensembles for glucose biosensors. Mater. Sci. Eng., C 2007, 27, 57–60. [Google Scholar]
- Marcinkevicien, L.; Bachmatova, I.; Semenaite, R.; Rudomanskis, R.; BraŽenas, G.; Meškiene, R.; Meškys, R. Purification and characterisation of PQQ-dependent glucose dehydrogenase from Erwinia sp. 34-1. Biotechnol. Lett. 1999, 21, 187–192. [Google Scholar]
- Spokane, R.B. Chemically wired fructose dehydrogenase electrodes. US Patent 5,298,144, 1994. [Google Scholar]
- Crismore, W.F.; Surridge, N.A.; McMinn, D.R.; Bodensteiner, R.J.; Diebold, E.R.; Delk, R.D.; Burke, D.W.; Ho, J.J.; Earl, R.K.; Heald, B.A. Electrochemical biosensor test strip. US Patent 6,270,637, 2001. [Google Scholar]
- Sode, K.; Igarashi, S. Glucose dehydrogenase. US patent 7,244,600, 2007. [Google Scholar]
- Hattori, S.; Sogabe, A.; Takeshima, S.; Kawamura, Y. Stable PQQ-dependent glucose dehydrogenase composition. US Patent 6,884,416, 2005. [Google Scholar]
- Hoenes, J.; Unkrig, V. Method for the colorimetric determination of an analyte with a PQQ-dependent dehydrogenase. US Patent 5,484,708, 1996. [Google Scholar]
- Razumiene, J.; Meskys, R.; Gureviciene, V.; Laurinavicius, V.; Reshetova, M.D.; Ryabov, A.D. 4-Ferrocenylphenol as an electron transfer mediator in PQQ-dependent alcohol and glucose dehydrogenase-catalyzed reactions. Electrochem. Commun. 2000, 2, 307–311. [Google Scholar]
- Razumiene, J.; Gureviciene, V.; Vilkanauskyte, A.; Marcinkeviciene, L.; Bachmatova, I.; Meskys, R.; Laurinavicius, V. Improvement of screen-printed carbon electrodes by modification with ferrocene derivative. Sens. Actuat. B Chem. 2003, 95, 378–383. [Google Scholar]
- Alkasrawi, M.; Popescu, I.C.; Laurinavicius, V.; Mattiassona, B.; Csoregi, E. A redox hydrogel integrated PQQ-glucose dehydrogenase based glucose electrode. Anal. Commun. 1999, 36, 395–398. [Google Scholar]
- Laurinavicius, V.; Kurtinaitiene, B.; Liauksminas, V.; Jankauskaite, A.; Simkus, R.; Meskys, R.; Boguslavsky, L.; Skotheim, T.; Tanenbaum, S. Reagentless biosensor based on PQQ-depended glucose dehydrogenase and partially hydrolyzed polyarbutin. Talanta 2000, 52, 485–493. [Google Scholar]
- Malinauskas, A.; Kuzmarskyte, J.; Meskys, R.; Ramanavicius, A. Bioelectrochemical sensor based on PQQ-dependent glucose dehydrogenase. Sens. Actuat. B Chem. 2004, 100, 387–394. [Google Scholar]
- Zayats, M.; Katz, E.; Baron, R.; Willner, I. Reconstitution of apo-glucose dehydrogenase on pyrroloquinoline quinone-functionalized Au nanoparticles yields an electrically contacted biocatalyst. J. Am. Chem. Soc. 2005, 127, 12400–12406. [Google Scholar]
- Okuda, J.; Wakai, J.; Yuhashi, N.; Sode, K. Glucose enzyme electrode using cytochrome b562 as an electron mediator. Biosens. Bioelectron. 2003, 18, 699–704. [Google Scholar]
- Habermuller, K.; Ramanavicius, A.; Laurinavicius, V.; Schuhmann, W. An Oxygen-Insensitive Reagentless Glucose Biosensor Based on Osmium-Complex Modified Polypyrrole. Electroanalysis 2000, 12, 1383–1389. [Google Scholar]
- Vilkanauskyte, A.; Erichsen, T.; Marcinkeviciene, L.; Laurinavicius, V.; Schuhmann, W. Reagentless biosensors based on co-entrapment of a soluble redox polymer and an enzyme within an electrochemically deposited polymer film. Biosens. Bioelectron. 2002, 17, 1025–1031. [Google Scholar]
- Ye, L.; Hiimmerle, J.M.; Olsthoorn, A.J.J.; Schuhmann, W.; Schmidt, H.-L.; Duine, J.A.; Heller, A. High Current Density “Wired” Quinoprotein Glucose Dehydrogenase Electrode. Anal. Chem. 1993, 65, 238–241. [Google Scholar]
- Habermuller, K.; Reiter, S.; Buck, H.; Meier, T.; Staepels, J.; Schuhmann, W. Conducting Redoxpolymer-Based Reagentless Biosensors Using Modified PQQ-Dependent Glucose Dehydrogenase. Microchim. Acta 2003, 143, 113–121. [Google Scholar]
- Laurinavicius, V.; Razumiene, J.; Kurtinaitiene, B.; Lapenaite, I.; Bachmatova, I.; Marcinkeviciene, L.; Meskys, R.; Ramanavicius, A. Bioelectrochemical application of some PQQ-dependent enzymes. Bioelectrochemistry 2002, 55, 29–32. [Google Scholar]
- Rose, A.; Scheller, F.W.; Wollenberger, U.; Pfeiffer, D. Quinoprotein glucose dehydrogenase modified thick-film electrodes for the amperometric detection of phenolic compounds in flow injection analysis. Fresenius J. Anal. Chem. 2001, 369, 145–152. [Google Scholar]
- Okuda, J.; Wakai, J.; Igarashi, S.; Sode, K. Engineered PQQ glucose dehydrogenase-based enzyme sensor for continuous glucose monitoring. Anal. Lett. 2004, 37, 1847–1857. [Google Scholar]
- Park, S.; Boo, H.; Chung, T.D. Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 2006, 556, 46–57. [Google Scholar]
- Kurniawan, F.; Tsakova, V.; Mirsky, V.M. Gold nanoparticles in nonenzymatic electrochemical detection of sugars. Electroanalysis 2006, 18, 1937–1942. [Google Scholar]
- Jena, B.K.; Raj, C.R. Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem. Eur. J. 2006, 12, 2702–2708. [Google Scholar]
- Kang, X.; Mai, Z.; Zou, X.; Cai, P.; Mo, J. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem. 2007, 363, 143–150. [Google Scholar]
- Li, Y.; Song, Y.Y.; Yang, C.; Xia, X.H. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem. Commun. 2007, 9, 981–988. [Google Scholar]
- Kondepati, V.; Heise, H. Recent progress in analytical instrumentation for glycemic control in diabetic and critically ill patients. Anal. Bioanal. Chem. 2007, 388, 545–563. [Google Scholar]
- Glikfeld, P.; Hinz, R.S.; Guy, R.H. Noninvasive Sampling of Biological Fluids by Iontophoresis. Pharm. Res. 1989, 6, 988–990. [Google Scholar]
- Leboulanger, B.; Guy, R.H.; Delgado-Charro, M.B. Reverse iontophoresis for non-invasive transdermal monitoring. Physiol. Meas. 2004, 25, R35–R50. [Google Scholar]
- Tierney, M.J.; Kim, H.L.; Burns, M.D.; Tamada, J.A.; Potts, R.O. Electroanalysis of Glucose in Transcutaneously Extracted Samples. Electroanalysis 2000, 12, 666–671. [Google Scholar]
- Tierney, M.J.; Tamada, J.A.; Potts, R.O.; Jovanovic, L.; Garg, S. Clinical evaluation of the GlucoWatch(R) biographer: a continual, non-invasive glucose monitor for patients with diabetes. Biosens. Bioelectron. 2001, 16, 621–629. [Google Scholar]
- The Daibetes Research in Children Network Study Group. Accuracy of the GlucoWatch G2 Biographer and the Continuous Glucose Monitoring System During Hypoglycemia: Experience of the Diabetes Research in Children Network. Diabetes Care 2004, 27, 722–726. [Google Scholar]
- Sieg, A.; Guy, R.H.; Delgado-Charro, M.B. Reverse iontophoresis for noninvasive glucose monitoring: The internal standard concept. J. Pharm. Sci. 2003, 92, 2295–2302. [Google Scholar]
- Sieg, A.; Guy, R.H.; Delgado-Charro, M.B. Noninvasive Glucose Monitoring by Reverse Iontophoresis in Vivo: Application of the Internal Standard Concept. Clin. Chem. 2004, 50, 1383–1390. [Google Scholar]
- Sieg, A.; Guy, R.H.; Delgado-Charro, M.B. Electroosmosis in Transdermal Iontophoresis: Implications for Noninvasive and Calibration-Free Glucose Monitoring. Biophys. J. 2004, 87, 3344–3350. [Google Scholar]
- Mitragotri, S.; Kost, J. Low-frequency sonophoresis: A review. Adv. Drug Deliv. Rev. 2004, 56, 589–601. [Google Scholar]
- Lee, S.; Nayak, V.; Dodds, J.; Pishko, M.; Smith, N.B. Glucose measurements with sensors and ultrasound. Ultrasound Med. Biol. 2005, 31, 971–977. [Google Scholar]
- Kvist, P.H.; Iburg, T.; Aalbaek, B.; Gerstenberg, M.; Schoier, C.; Kaastrup, P.; Buch-Rasmussen, T.; Hasselager, E.; Jensen, H.E. Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis. Diabetes Tech. Ther. 2006, 8, 546–559. [Google Scholar]
- Long, N.; Yu, B.; Moussy, Y.; Moussy, F. Strategies for testing long-term transcutaneous amperometric glucose sensors. Diabetes Tech. Ther. 2005, 7, 927–936. [Google Scholar]
- Kvist, P.H.; Iburg, T.; Bielecki, M.; Gerstenberg, M.; Buch-Rasmussen, T.; Hasselager, E.; Jensen, H.E. Biocompatibility of electrochemical glucose sensors implanted in the subcutis of pigs. Diabetes Tech. Ther. 2006, 8, 463–475. [Google Scholar]
- Schoenfisch, M.H.; Rothrock, A.R.; Shin, J.H.; Polizzi, M.A.; Brinkley, M.F.; Dobmeier, K.P. Poly(vinylpyrrolidone)-doped nitric oxide-releasing xerogels as glucose biosensor membranes. Biosens. Bioelectron. 2006, 22, 306–312. [Google Scholar]
- Gifford, R.; Batchelor, M.M.; Lee, Y.; Gokulrangan, G.; Meyerhoff, M.E.; Wilson, G.S. Mediation of in vivo glucose sensor inflammatory response via nitric oxide release. J. Biomed. Mater. Res. Part A 2005, 75, 755–766. [Google Scholar]
- Fredrickson, D.S.; Levy, R.I. The metabolic basis of inherited disease.; Stanbury, J.B., Wyngaarden, J.B., Fredrickson, D. S., Eds.; McGraw-Hill: New York, 1972; p. 545. [Google Scholar]
- Aravamudhan, S.; Kumar, A.; Mohapatra, S.; Bhansali, S. Sensitive estimation of total cholesterol in blood using Au nanowires based micro-fluidic platform. Biosens. Bioelectron. 2007, 22, 2289–2294. [Google Scholar]
- Bongiovanni, C.; Ferri, T.; Poscia, A.; Varalli, M.; Santucci, R.; Desideri, A. An electrochemical multienzymatic biosensor for determination of cholesterol. Bioelectrochemistry 2001, 54, 17–22. [Google Scholar]
- Li, G.; Liao, J.M.; Hu, G.Q.; Ma, N.Z.; Wu, P.J. Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosens. Bioelectron. 2005, 20, 2140–2144. [Google Scholar]
- Vidal, J.-C.; Espuelas, J.; Garcia-Ruiz, E.; Castillo, J.-R. Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and the electrocatalytic effect of Prussian-Blue layers helped with self-assembled monolayers. Talanta 2004, 64, 655–664. [Google Scholar]
- Li, J.; Peng, T.; Peng, Y. A Cholesterol Biosensor Based on Entrapment of Cholesterol Oxidase in a Silicic Sol-Gel Matrix at a Prussian Blue Modified Electrode. Electroanalysis 2003, 15, 1031–1037. [Google Scholar]
- Roy, S.; Vedala, H.; Choi, W. Vertically aligned carbon nanotube probes for monitoring blood cholesterol. Nanotechnology 2006, 17, S14–S18. [Google Scholar]
- Wang, H.; Mu, S. Bioelectrochemical characteristics of cholesterol oxidase immobilized in a polyaniline film. Sens. Actuat. B Chem. 1999, 56, 22–30. [Google Scholar]
- Vidal, J.C.; Garcia, E.; Castillo, J.R. Development of a platinized and ferrocene-mediated cholesterol amperometric biosensor based on electropolymerization of polypyrrole in a flow system. Anal. Sci. 2002, 18, 537–542. [Google Scholar]
- Vidal, J.C.; Garcia, E.; Castillo, J.R. In situ preparation of overoxidized PPy/oPPD bilayer biosensors for the determination of glucose and cholesterol in serum. Sens. Actuat. B Chem. 1999, 57, 219–226. [Google Scholar]
- Shumyantseva, V.V.; Bulko, T.V.; Usanov, S.A.; Schmid, R.D.; Nicolini, C.; Archakov, A.I. Construction and characterization of bioelectrocatalytic sensors based on cytochromes P450. J. Inorg. Biochem. 2001, 87, 185–190. [Google Scholar]
- Shumyantseva, V.; Deluca, G.; Bulko, T.; Carrara, S.; Nicolini, C.; Usanov, S.A.; Archakov, A. Cholesterol amperometric biosensor based on cytochrome P450scc. Biosens. Bioelectron. 2004, 19, 971–976. [Google Scholar]
- Nicolini, C.; Erokhin, V.; Ghisellini, P.; Paternolli, C.; Ram, M.K.; Sivozhelezov, V. P450scc engineering and nanostructuring for cholesterol sensing. Langmuir 2002, 17, 3719–3726. [Google Scholar]
- Paternolli, C.; Antonini, M.; Ghisellini, P.; Nicolini, C. Recombinant cytochrome P450 immobilization for biosensor applications. Langmuir 2004, 20, 11706–11712. [Google Scholar]
- Piletsky, S.A.; Piletskaya, E.V.; Sergeyeva, T.A.; Panasyuk, T.L.; El'Skaya, A.V. Molecularly imprinted self-assembled films with specificity to cholesterol. Sens. Actuat. B Chem. 1999, 60, 216–220. [Google Scholar]
- Chou, L.C.S.; Liu, C.C. Development of a molecular imprinting thick film electrochemical sensor for cholesterol detection. Sens. Actuat. B Chem. 2005, 110, 204–208. [Google Scholar]
- Chen, J.C.; Chung, H.H.; Hsu, C.T.; Tsai, D.M.; Kumar, A.S.; Zen, J.M. A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood. Sens. Actuat. B, Chem. 2005, 110, 364–369. [Google Scholar]
- Bravo, R.; Hsueh, C.; Jaramillo, A.; Brajter-Toth, A. Possibilities and limitations in miniaturized sensor design for uric acid. Analyst 1998, 123, 1625–1630. [Google Scholar]
- Dobay, R.; Harsanyi, G.; Visy, C. Detection of uric acid with a new type of conducting polymer-based enzymatic sensor by bipotentiostatic technique. Anal. Chim. Acta 1999, 385, 187–194. [Google Scholar]
- Cete, S.; Yasar, A.; Arslan, F. An amperometric biosensor for uric acid determination prepared from uricase immobilized in polypyrrole film. Artif. Cells, Blood Subst. Biotechnol. 2006, 34, 367–380. [Google Scholar]
- Nakaminami, T.; Ito, S.I.; Kuwabata, S.; Yoneyama, H. A biomimetic phospholipid/ nalkanethiolate bilayer immobilizing uricase and an electron mediator on an Au electrode for amperometric determination of uric acid. Anal. Chem. 1999, 71, 4278–4283. [Google Scholar]
- Nakaminami, T.; Ito, S.I.; Kuwabata, S.; Yoneyama, H. Uricase-catalyzed oxidation of uric acid using an artificial electron acceptor and fabrication of amperometric uric acid sensors with use of a redox ladder polymer. Anal. Chem. 1999, 71, 1928–1934. [Google Scholar]
- Noguchi, T.; Hoshi, T.; Anzai, J.I. An electrochemical response of polyelectrolyte multilayer film-coated electrodes to uric acid and ascorbic acid. Sens. Lett. 2005, 3, 164–167. [Google Scholar]
- Hoshi, T.; Saiki, H.; Anzai, J.I. Amperometric uric acid sensors based on polyelectrolyte multilayer films. Talanta 2003, 61, 363–368. [Google Scholar]
- Cheng, W.L.; Jung, C.C.; Tai, P.S.; Shen, K.H.; Jui, H.H. Preliminary investigations on a new disposable potentiometric biosensor for uric acid. IEEE Trans. Biomed. Eng. 2006, 53, 1401–1408. [Google Scholar]
- Zeng, Y.; Li, C.; Tang, C.; Zhang, X.B.; Shen, G.; Yu, R. The electrochemical properties of Co(TPP), tetraphenylborate modified glassy carbon electrode: Application to dopamine and uric acid analysis. Electroanalysis 2006, 18, 440–448. [Google Scholar]
- He, J.B.; Jin, G.P.; Chen, Q.Z.; Wang, Y. A quercetin-modified biosensor for amperometric determination of uric acid in the presence of ascorbic acid. Anal. Chim. Acta 2007, 585, 337–343. [Google Scholar]
- Li, J.; Lin, X.Q. Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid. Anal. Chim. Acta 2007, 596, 222–230. [Google Scholar]
- Wang, P.; Li, Y.; Huang, X.; Wang, L. Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta 2007, 73, 431–437. [Google Scholar]
- Ye, J.S.; Wen, Y.; Zhang, W.D.; Gan, L.M.; Xu, G.Q.; Sheu, F.S. Selective Voltammetric Detection of Uric Acid in the Presence of Ascorbic Acid at Well-Aligned Carbon Nanotube Electrode. Electroanalysis 2003, 15, 1693–1698. [Google Scholar]
- Wang, C.; Liu, Q.; Shao, X.; Yang, G.; Xue, H.; Hu, X. One step fabrication of nanoelectrode ensembles formed via amphiphilic block copolymers self-assembly and selective voltammetric detection of uric acid in the presence of high ascorbic acid content. Talanta 2007, 71, 178–185. [Google Scholar]
- Raj, C.R.; Ohsaka, T. Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. J. Electroanal. Chem. 2003, 540, 69–77. [Google Scholar]
- Nassef, H.M.; Radi, A.E.; O′Sullivan, C. Simultaneous detection of ascorbate and uric acid using a selectively catalytic surface. Anal. Chim. Acta 2007, 583, 182–189. [Google Scholar]
- Selvaraju, T.; Ramaraj, R. Simultaneous detection of ascorbic acid, uric acid and homovanillic acid at copper modified electrode. Electrochim. Acta 2007, 52, 2998–3005. [Google Scholar]
- Xiao, L.; Chen, J.; Cha, C.S. Elimination of the interference of ascorbic acid in the amperometric detection of biomolecules in body fluid samples and the simple detection of uric acid in human serum and urine by using the powder microelectrode technique. J. Electroanal. Chem. 2000, 495, 27–35. [Google Scholar]
- Frebel, H.; Chemnitius, G.C.; Cammann, K.; Kakerow, R.; Rospert, M.; Mokwa, W. Multianalyte sensor for the simultaneous determination of glucose, L-lactate and uric acid based on a microelectrode array. Sens. Actuat. B Chem. 1997, 43, 87–93. [Google Scholar]
- Zen, J.M.; Lai, Y.Y.; Yang, H.H.; Senthil Kumar, A. Multianalyte sensor for the simultaneous determination of hypoxanthine, xanthine and uric acid based on a preanodized nontronite-coated screen-printed electrode. Sens. Actuat. B Chem. 2002, 84, 237–244. [Google Scholar]
- Smutok, O.; Gayda, G.; Gonchar, M.; Schuhmann, W. A novel L-lactate-selective biosensor based on flavocytochrome b2 from methylotrophic yeast Hansenula polymorpha. Biosens. Bioelectron. 2005, 20, 1285–1290. [Google Scholar]
- Sato, N.; Okuma, H. Amperometric simultaneous sensing system for D-glucose and L-lactate based on enzyme-modified bilayer electrodes. Anal. Chim. Acta 2006, 565, 250–254. [Google Scholar]
- Lin, C.L.; Shih, C.L.; Chau, L.K. Amperometric L-lactate sensor based on sol-gel processing of an enzyme-linked silicon alkoxide. Anal. Chem. 2007, 79, 3757–3763. [Google Scholar]
- Suman, S.; Singhal, R.; Sharma, A.L.; Malthotra, B.D.; Pundir, C.S. Development of a lactate biosensor based on conducting copolymer bound lactate oxidase. Sens. Actuat. B Chem. 2005, 107, 768–772. [Google Scholar]
- Haccoun, J.; Piro, B.; Tran, L.D.; Dang, L.A.; Pham, M.C. Reagentless amperometric detection of L-lactate on an enzyme-modified conducting copolymer poly(5-hydroxy-1,4-naphthoquinone-co-5-hydroxy-3- thioacetic acid-1,4-naphthoquinone). Biosens. Bioelectron. 2004, 19, 1325–1329. [Google Scholar]
- Cui, X.; Li, C.M.; Zang, J.; Yu, S. Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite. Biosens. Bioelectron. 2007, 22, 3288–3292. [Google Scholar]
- Ahn, C.H.; Ahn, C.H.; Jin-Woo, C.; Beaucage, G.; Nevin, J.H.A.N.J.H.; Jeong-Bong Lee, A.J.-B.L.; Puntambekar, A.A.P.A.; Lee, J.Y.A.L.J.Y. Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc. IEEE. 2004, 92, 154–173. [Google Scholar]
- Kurita, R.; Yabumoto, N.; Niwa, O. Miniaturized one-chip electrochemical sensing device integrated with a dialysis membrane and double thin-layer flow channels for measuring blood samples. Biosens. Bioelectron. 2006, 21, 1649–1653. [Google Scholar]
- Smutok, O.; Dmytruk, K.; Gonchar, M.; Sibirny, A.; Schuhmann, W. Permeabilized cells of flavocytochrome b2 over-producing recombinant yeast Hansenula polymorpha as biological recognition element in amperometric lactate biosensors. Biosens. Bioelectron. 2007, 23, 599–605. [Google Scholar]
- Weber, J.; Kumar, A.; Kumar, A.; Bhansali, S. Novel lactate and pH biosensor for skin and sweat analysis based on single walled carbon nanotubes. Sens. Actuators, B, Chem. 2006, 117, 308–313. [Google Scholar]
- Kudo, H.; Iguchi, S.; Yamada, T.; Kawase, T.; Saito, H.; Otsuka, K.; Mitsubayashi, K. A flexible transcutaneous oxygen sensor using polymer membranes. Biomed. Microdevices. 2007, 9, 1–6. [Google Scholar]
- Lam, Y.Z.; Atkinson, J.K. Biomedical sensor using thick film technology for transcutaneous oxygen measurement. Med. Eng. Phys. 2007, 29, 291–297. [Google Scholar]
- Iguchi, S.; Mitsubayashi, K.; Uehara, T.; Ogawa, M. A wearable oxygen sensor for transcutaneous blood gas monitoring at the conjunctiva. Sens. Actuat. B Chem. 2005, 108, 733–737. [Google Scholar]
- Jinghong, H.; Dafu, C.; Yating, L.; Jine, C.; Zheng, D.; Hong, Z.; Chenglin, S. A new type of transcutaneous pCO2 sensor. Sens. Actuat. B Chem. 1995, B24, 156–158. [Google Scholar]
- Wu, Y.; Rojas, A.P.; Griffith, G.W.; Skrzypchak, A.M.; Lafayette, N.; Bartlett, R.H.; Meyerhoff, M.E. Improving blood compatibility of intravascular oxygen sensors via catalytic decomposition of S-nitrosothiols to generate nitric oxide in situ. Sens. Actuat. B Chem. 2007, 121, 36–46. [Google Scholar]
- Schoenfisch, M.H.; Mowery, K.A.; Rader, M.V.; Baliga, N.; Wahr, J.A.; Meyerhoff, M.E. Improving the thromboresistivity of chemical sensors via nitric oxide release: Fabrication and in vivo evaluation of NO-releasing oxygen-sensing catheters. Anal. Chem. 2000, 72, 1119–1126. [Google Scholar]
- Frost, M.C.; Rudich, S.M.; Zhang, H.; Maraschio, M.A.; Meyerhoff, M.E. In vivo biocompatibility and analytical performance of intravascular amperometric oxygen sensors prepared with improved nitric oxide-releasing silicone rubber coating. Anal. Chem. 2002, 74, 5942–5947. [Google Scholar]
- Yalcinkaya, F.; Powner, E.T. Portable battery-operated multi-sensor-array for whole human blood analysis. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings 1997, 6, 2350–2353. [Google Scholar]
- Uhlig, A.; Lindner, E.; Teutloff, C.; Schnakenberg, U.; Hintsche, R. Miniaturized Ion-Selective Chip Electrode for Sensor Application. Anal. Chem. 1997, 69, 4032–4038. [Google Scholar]
- Suzuki, H.; Hirakawa, T.; Hoshi, T.; Toyooka, H. Micromachined sensing module for pO2, pCO2, and pH and its design optimization for practical use. Sens. Actuat. B Chem. 2001, 76, 565–572. [Google Scholar]
- Wang, X.; Suzuki, H.; Hayashi, K.; Kaneko, T.; Sunagawa, K. Microfabricated needle-type sensors for pO2, pCO2, and pH. IEEE Sens. J. 2006, 6, 11–17. [Google Scholar]
- Dutta, M.; Chilukuru, S.; Ramasamy, L.; Zhu, X.; Do, J.; Gao, C.; Hong, C.C.; Puntambekar, A.; Han, J.; Lee, S.H.; Trichur, R.; Choi, J.W.; Nevin, J.H.; Ahn, C.H. Multi-Analyte Detection Handheld Analyzer for Point-of-Care Application with Disposable Biochips. Proc. IEEE Sensors 2003. [Google Scholar]
- Lauks, I.R. Microfabricated Biosensors and Microanalytical Systems for Blood Analysis. Acc. Chem. Res. 1998, 31, 317–324. [Google Scholar]
- Jacobs, E.; Vadasdi, E.; Sarkozi, L.; Colman, N. Analytical evaluation of i-STAT Portable Clinical Analyzer and use by nonlaboratory health-care professionals. Clin. Chem. 1993, 39, 1069–1074. [Google Scholar]
- Akagi, Y.; Makimura, M.; Yokoyama, Y.; Fukazawa, M.; Fujiki, S.; Kadosaki, M.; Tanino, K. Development of a ligation-based impedimetric DNA sensor for single-nucleotide polymorphism associated with metabolic syndrome. Electrochim. Acta 2006, 51, 6367–6372. [Google Scholar]
- Yang, J.; Yang, T.; Feng, Y.; Jiao, K. A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment. Anal. Biochem. 2007, 365, 24–30. [Google Scholar]
- Yang, J.; Jiao, K.; Yang, T. A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single-walled carbon nanotubes and poly(2,6-pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment. Anal. Bioanal. Chem. 2007, 389, 913–921. [Google Scholar]
- Zari, N.; Mohammedi, H.; Amine, A.; Ennaji, M.M. DNA hydrolysis and voltammetric determination of guanine and adenine using different electrodes. Anal. Lett. 2007, 40, 1698–1713. [Google Scholar]
- Peng, H.; Zhang, L.; Spires, J.; Soeller, C.; Travas-Sejdic, J. Synthesis of a functionalized polythiophene as an active substrate for a label-free electrochemical genosensor. Polymer 2007, 48, 3413–3419. [Google Scholar]
- Loaiza, O.A.; Campuzano, S.; Pedrero, M.; Pingarron, J.M. DNA sensor based on an Escherichia coli lac Z gene probe immobilization at self-assembled monolayers-modified gold electrodes. Talanta 2007, 73, 838–844. [Google Scholar]
- Li, X.-M.; Ju, H.-Q.; Du, L.-P.; Zhang, S.-S. A nucleic acid biosensor for the detection of a short sequence related to the hepatitis B virus using bis(benzimidazole)cadmium(II) dinitrate as an electrochemical indicator. J. Inorg. Biochem. 2007, 101, 1165–1171. [Google Scholar]
- Bouchet, A.; Chaix, C.; Marquette, C.A.; Blum, L.J.; Mandrand, B. Cylinder-shaped conducting polypyrrole for labelless electrochemical multidetection of DNA. Biosens. Bioelectron. 2007, 23, 735–740. [Google Scholar]
- Liao, J.C.; Mastali, M.; Gau, V.; Suchard, M.A.; Moller, A.K.; Bruckner, D.A.; Babbitt, J.T.; Li, Y.; Gornbein, J.; Landaw, E.M.; McCabe, E.R.B.; Churchill, B.M.; Haake, D.A. Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. J. Clin. Microbiol. 2006, 44, 561–570. [Google Scholar]
- Yang, X.; Lu, Y.; Ma, Y.; Liu, Z.; Du, F.; Chen, Y. DNA electrochemical sensor based on an adduct of single-walled carbon nanotubes and ferrocene. Biotechnol. Lett. 2007, 29, 1775–1779. [Google Scholar]
- Fojta, M.; Havran, L.; Kizek, R.; Billova, S.; Palecek, E. Multiply osmium-labeled reporter probes for electrochemical DNA hybridization assays: Detection of trinucleotide repeats. Biosens. Bioelectron. 2004, 20, 985–994. [Google Scholar]
- Trefulka, M.; Ferreyra, N.; Ostatna, V.; Fojta, M.; Rivas, G.; Palecek, E. Voltammetry of osmium end-labeled oligodeoxynucleotides at carbon, mercury, and gold electrodes. Electroanalysis 2007, 19, 1334–1338. [Google Scholar]
- de la Escosura-Muniz, A.; Gonzalez-Garcia, M.B.; Costa-Garcia, A. DNA hybridization sensor based on aurothiomalate electroactive label on glassy carbon electrodes. Biosens. Bioelectron. 2007, 22, 1048–1054. [Google Scholar]
- Djellouli, N.; Rochelet-Dequaire, M.; Limoges, B.; Druet, M.; Brossier, P. Evaluation of the analytical performances of avidin-modified carbon sensors based on a mediated horseradish peroxidase enzyme label and their application to the amperometric detection of nucleic acids. Biosens. Bioelectron. 2007, 22, 2906–2913. [Google Scholar]
- Wu, L.; Chen, J.; Du, D.; Ju, H. Electrochemical immunoassay for CA125 based on cellulose acetate stabilized antigen/colloidal gold nanoparticles membrane. Electrochim. Acta 2006, 51, 1208–1214. [Google Scholar]
- Dai, Z.; Serban, S.; Ju, H.; El Murr, N. Layer-by-layer hydroxymethyl ferrocene modified sensor for one-step flow/stop-flow injection amperometric immunoassay of α-fetoprotein. Biosens. Bioelectron. 2007, 22, 1700–1706. [Google Scholar]
- Du, D.; Xu, X.; Wang, S.; Zhang, A. Reagentless amperometric carbohydrate antigen 19-9 immunosensor based on direct electrochemistry of immobilized horseradish peroxidase. Talanta 2007, 71, 1257–1262. [Google Scholar]
- Ordonez, S.S.; Fabregas, E. New antibodies immobilization system into a graphite-polysulfone membrane for amperometric immunosensors. Biosens. Bioelectron. 2007, 22, 965–972. [Google Scholar]
- Qiang, Z.; Yuan, R.; Chai, Y.; Wang, N.; Zhuo, Y.; Zhang, Y.; Li, X. A new potentiometric immunosensor for determination of α-fetoprotein based on improved gelatin-silver complex film. Electrochim. Acta 2006, 51, 3763–3768. [Google Scholar]
- Kamahori, M.; Ishige, Y.; Shimoda, M. A novel enzyme immunoassay based on potentiometric measurement of molecular adsorption events by an extended-gate field-effect transistor sensor. Biosens. Bioelectron. 2007, 22, 3080–3085. [Google Scholar]
- Thurer, R.; Vigassy, T.; Hirayama, M.; Wang, J.; Bakker, E.; Pretsch, E. Potentiometric immunoassay with quantum dot labels. Anal. Chem. 2007, 79, 5107–5110. [Google Scholar]
- Helali, S.; Martelet, C.; Abdelghani, A.; Maaref, M.A.; Jaffrezic-Renault, N. A disposable immunomagnetic electrochemical sensor based on functionalised magnetic beads on gold surface for the detection of atrazine. Electrochim. Acta 2006, 51, 5182–5186. [Google Scholar]
- Balkenhohl, T.; Lisdat, F. An impedimetric immunosensor for the detection of autoantibodies directed against gliadins. Analyst 2007, 132, 314–322. [Google Scholar]
- Rahman, M.A.; Shiddiky, M.J.A.; Park, J.S.; Shim, Y.B. An impedimetric immunosensor for the label-free detection of bisphenol A. Biosens. Bioelectron. 2007, 22, 2464–2470. [Google Scholar]
- Zou, Z.; Kai, J.; Rust, M.J.; Han, J.; Ahn, C.H. Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sens. Actuat. A Phys. 2007, 136, 518–526. [Google Scholar]
- Hays, H.C.W.; Millner, P.A.; Prodromidis, M.I. Development of capacitance based immunosensors on mixed self-assembled monolayers. Sens. Actuat. B Chem. 2006, 114, 1064–1070. [Google Scholar]
- Briman, M.; Artukovic, E.; Zhang, L.; Chia, D.; Goodglick, L.; Gruner, G. Direct electronic detection of prostate-specific antigen in serum. Small 2007, 3, 758–762. [Google Scholar]
- Brett, C.M.A.; Inzelt, G.; Kertesz, V. Poly(methylene blue) modified electrode sensor for haemoglobin. Anal. Chim. Acta 1999, 385, 119–123. [Google Scholar]
- Shi, J.; Yan, G.Z.; Wang, K.D.; Fang, Y. Non-invasive method to detect and locate haemorrhagic focus of GI tract. J. Med. Eng. Tech. 2007, 31, 123–128. [Google Scholar]
- Fan, C.; Wang, H.; Sun, S.; Zhu, D.; Wagner, G.; Li, G. Electron-Transfer Reactivity and Enzymatic Activity of Hemoglobin in a SP Sephadex Membrane. Anal. Chem. 2001, 73, 2850–2854. [Google Scholar]
- Fan, C.; Li, G.; Zhuang, Y.; Zhu, J.; Zhu, D. Iodide Modified Silver Electrode and Its Application to the Electroanalysis of Hemoglobin. Electroanalysis 2000, 12, 205–208. [Google Scholar]
- Lai, R.Y.; Plaxco, K.W.; Heeger, A.J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal. Chem. 2007, 79, 229–233. [Google Scholar]
- Li, G.; Ma, N.Z.; Wang, Y. A new handheld biosensor for monitoring blood ketones. Sens. Actuators, B, Chem. 2005, 109, 285–290. [Google Scholar]
- Forrow, N.J.; Sanghera, G.S.; Walters, S.J.; Watkin, J.L. Development of a commercial amperometric biosensor electrode for the ketone D-3-hydroxybutyrate. Biosens. Bioelectron. 2005, 20, 1617–1625. [Google Scholar]
- Hemmingsson, T.; Linnarsson, D.; Gambert, R. Novel hand-held device for exhaled nitric oxide-analysis in research and clinical applications. J. Clin. Monit. Comput. 2004, 18, 379–387. [Google Scholar]
© 2008 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Wang, Y.; Xu, H.; Zhang, J.; Li, G. Electrochemical Sensors for Clinic Analysis. Sensors 2008, 8, 2043-2081. https://doi.org/10.3390/s8042043
Wang Y, Xu H, Zhang J, Li G. Electrochemical Sensors for Clinic Analysis. Sensors. 2008; 8(4):2043-2081. https://doi.org/10.3390/s8042043
Chicago/Turabian StyleWang, You, Hui Xu, Jianming Zhang, and Guang Li. 2008. "Electrochemical Sensors for Clinic Analysis" Sensors 8, no. 4: 2043-2081. https://doi.org/10.3390/s8042043