Diaphragm-Free Fiber-Optic Fabry-Perot Interferometric Gas Pressure Sensor for High Temperature Application
<p>Schematic of the fiber-optic FP gas pressure sensor for high temperature.</p> "> Figure 2
<p>Interference spectrum simulation of the fiber-optic FP gas pressure sensor.</p> "> Figure 3
<p>Microscopic image of the fiber-optic FP gas pressure sensor.</p> "> Figure 4
<p>The schematic of the fabrication process. (<b>a</b>) Well-cleaved the SMF and silica casing. (<b>b</b>) Fusing the SMF and silica casing together at the end of the silica casing. (<b>c</b>) Cleaved the silica casing. (<b>d</b>) Well-cleaved the HST. (<b>e</b>) Fusing the silica casing and HST together at the other end of the silica casing. (<b>f</b>) Cleaved the excess of the HST.</p> "> Figure 5
<p>Interference spectrum of the fiber-optic FP gas pressure sensor with FP interferometer and FBG.</p> "> Figure 6
<p>Experimental setup for pressure and high-temperature test.</p> "> Figure 7
<p>Interference spectrum: (<b>a</b>) FP interferometer with stable FBG; (<b>b</b>) The shifts of wavelength with pressure at 20, 200, 400, 600 and 800 °C.</p> "> Figure 8
<p>The stability test results of the proposed sensor at 0.1, 0.4 and 0.7 MPa under 800 °C for 100 min.</p> "> Figure 9
<p>Fitting curves of the relationship of: (<b>a</b>) FBG center wavelength and temperature; (<b>b</b>) sensitivity and temperature.</p> "> Figure 10
<p>Temperature decoupling results: (<b>a</b>) at 20 °C; (<b>b</b>) at 400 °C; (<b>c</b>) at 800 °C.</p> ">
Abstract
:1. Introduction
2. Operating Principle
2.1. Optical Interference Principle
2.2. Temperature Decoupling Principle
3. Sensor Fabrication
4. Experiments and Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jewart, C.M.; Wang, Q.Q.; Canning, J.; Grobnic, D.; Mihailov, S.J.; Chen, K.P. Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing. Opt. Lett. 2010, 35, 1443–1445. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.A.; Mustafa, A.I. A study on damages in alloyed super heater tubes of thermal power station. Indian J. Eng. Mater. Sci. 2007, 14, 19–23. [Google Scholar]
- Rao, Y.J.; Zhu, T.; Yang, X.C.; Duan, D.W. In-line fiber-optic etalon formed by hollow-core photonic crystal fiber. Opt. Lett. 2007, 32, 2662–2664. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Wu, D.; Liu, M.; Duan, D.W. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers. Sensors 2012, 12, 10430–10449. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.M.; Huang, Y.W.; Meng, H.Y.; Huang, X.G. Simultaneous Measurement of Temperature and Pressure by Utilizing an Integrated Mach-Zehnder. J. Lightwave Technol. 2017, 35, 4924–4929. [Google Scholar] [CrossRef]
- Peng, F.; Yang, J.; Li, X.L.; Yuan, Y.G.; Wu, B.; Zhou, A.; Yuan, L.B. In-fiber integrated accelerometer. Opt. Lett. 2011, 36, 2056–2058. [Google Scholar] [CrossRef] [PubMed]
- Byeong, H.L.; Young, H.K.; Kwan, S.P.; Joo, B.E.; Myoung, J.K.; Byung, S.R.; Hae, Y.C. Interferometric Fiber Optic Sensors. Sensors 2012, 12, 2467–2486. [Google Scholar] [CrossRef]
- Donlagic, D.; Cibula, E. All-fiber high-sensitivity pressure sensor with SiO2 diaphragm. Opt. Lett. 2005, 30, 2071–2073. [Google Scholar] [CrossRef] [PubMed]
- Melissinaki, V.; Farsari, M.; Pissadakis, S. A Fiber-Endface, Fabry-Perot Vapor Microsensor Fabricated by Multiphoton Polymerization. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 5600110. [Google Scholar] [CrossRef]
- Poeggel, S.; Tosi, D.; Leen, G.; Lewis, E. Low-cost miniature fiber-optic extrinsic Fabry-Perot interferometric pressure sensor for biomedical applications. In Proceedings of the SPIE-Advanced Microscopy Techniques III, Munich, Germany, 17 June 2013. [Google Scholar]
- Wang, Q.; Zhang, L.; Sun, C.S.; Yu, Q.X. Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement. IEEE Sens. J. 2008, 8, 1879–1883. [Google Scholar] [CrossRef]
- Duraibabu, D.B.; Poeggel, S.; Omerdic, E.; Kalli, K.; Capocci, R.; Lacraz, A.; Dooly, G.; Lewis, E.; Newe, T.; Leen, G.; et al. Novel miniature pressure and temperature optical fibre sensor based on an extrinsic Fabry-Perot Interferometer (EFPI) and Fibre Bragg Gratings (FBG) for the Ocean environment. Proc. IEEE Sens. 2014, 2014, 394–397. [Google Scholar] [CrossRef]
- Villatoro, J.; Kreuzer, M.P.; Jha, R.; Minkovich, V.P.; Finazzi, V.; Badenes, G.; Pruneri, V. Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity. Opt. Express 2009, 17, 1447–1453. [Google Scholar] [CrossRef] [PubMed]
- Ran, Z.L.; Liu, S.; Liu, Q.; Wang, Y.J.; Bao, H.H.; Rao, Y.J. Novel High-Temperature Fiber-Optic Pressure Sensor Based on Etchd PCF F-P Interferometer Micromachined by a 157-nm Laser. IEEE Sens. J. 2015, 15, 3955–3958. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Bierlich, J.; Lehmann, H.; Schuster, K.; Kobelke, J.; Santos, J.L.; Frazao, O. Fabry-Perot Cavity Based on Hollow-Core Ring Photonic Crystal Fiber for Pressure Sensing. IEEE Photonics Technol. Lett. 2012, 24, 2122–2124. [Google Scholar] [CrossRef]
- Xu, B.; Wang, C.; Wang, D.N.; Liu, Y.M.; Li, Y. Fiber-tip gas pressure sensor based on dual capillaries. Opt. Express 2015, 23, 23484–23492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Z.; Yang, Y.H.; Wang, C.; Liao, C.R.; Wang, Y.P. Femtosecond-laser-inscribed sampled fiber Bragg grating with ultrahigh thermal stability. Opt. Express 2016, 24, 3981–3988. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wang, F.Y.; Luo, H.; Wang, Q.; Xiong, S.D. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure. Sensors 2016, 16, 620. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.G.; Fang, G.C.; Liang, T.; Hong, Y.P.; Tan, Q.L.; Chen, X.Y.; Liu, W.Y.; Xue, C.Y.; Liu, J.; Zhang, W.D.; et al. Temperature-compensated fiber-optic Fabry-Perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application. Sens. Actuators B Chem. 2017, 244, 226–232. [Google Scholar] [CrossRef]
Part Name | Type | Inner Diameters (um) | Outer Diameters (um) |
---|---|---|---|
SMF | G652D, Yangtze Optical Fiber and Cable Co., Ltd., Wuhan, China | 9 | 125 |
Silica casing | YN132200, Yongnian Ruipu Chromatogram Equipment Co., Ltd., Hebei, China | 132 | 200 |
HST | YN005125, Yongnian Ruipu Chromatogram Equipment Co., Ltd. | 5 | 125 |
Clean Intensity | Clean Time | Fusion Intensity | Fusion Time | |
---|---|---|---|---|
A | 200 units | 250 ms | 100 units | 600 ms |
B | 120 units | 180 ms | 100 units | 800 ms |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Jia, P.; Liu, J.; Fang, G.; Li, Z.; Hong, Y.; Liang, T.; Xiong, J. Diaphragm-Free Fiber-Optic Fabry-Perot Interferometric Gas Pressure Sensor for High Temperature Application. Sensors 2018, 18, 1011. https://doi.org/10.3390/s18041011
Liang H, Jia P, Liu J, Fang G, Li Z, Hong Y, Liang T, Xiong J. Diaphragm-Free Fiber-Optic Fabry-Perot Interferometric Gas Pressure Sensor for High Temperature Application. Sensors. 2018; 18(4):1011. https://doi.org/10.3390/s18041011
Chicago/Turabian StyleLiang, Hao, Pinggang Jia, Jia Liu, Guocheng Fang, Zhe Li, Yingping Hong, Ting Liang, and Jijun Xiong. 2018. "Diaphragm-Free Fiber-Optic Fabry-Perot Interferometric Gas Pressure Sensor for High Temperature Application" Sensors 18, no. 4: 1011. https://doi.org/10.3390/s18041011
APA StyleLiang, H., Jia, P., Liu, J., Fang, G., Li, Z., Hong, Y., Liang, T., & Xiong, J. (2018). Diaphragm-Free Fiber-Optic Fabry-Perot Interferometric Gas Pressure Sensor for High Temperature Application. Sensors, 18(4), 1011. https://doi.org/10.3390/s18041011