The Design and Characterization of a Flexible Tactile Sensing Array for Robot Skin
<p>(<b>a</b>) Exploded view of the capacitive tactile sensing array. (<b>b</b>) Cross-section view of one sensing unit, and (<b>c</b>) schematic view of different geometries of the microstructures on the polydimethylsiloxane (PDMS) layer, including pyramids with spaces of 50 μm (type I) and 150 μm (type II), and V-shape grooves with spaces of 50 μm (type III) and 150 μm (type IV).</p> "> Figure 2
<p>Fabrication process of the proposed tactile sensing array: (<b>a</b>) formation of the top and bottom electrodes on the polyethyleneterephthalate (PET) substrates; (<b>b</b>) formation of the microstructured dielectric layer; (<b>c</b>) formation of the bump contact layer, and (<b>d</b>) the bonding sequence.</p> "> Figure 3
<p>The fabricated capacitive sensing array bent by hand.</p> "> Figure 4
<p>SEM images of four different microstructures on the PDMS layer: (<b>a</b>) type I; (<b>b</b>) type II; (<b>c</b>) type III; and (<b>d</b>) type IV.</p> "> Figure 5
<p>Measurement setup to study the sensing performance of the tactile sensing array: (<b>a</b>) the tactile sensing array placed on a plate with a force gauge above it; (<b>b</b>) a partially enlarged view of (<b>a</b>); and (<b>c</b>) the semiconductor characterization system.</p> "> Figure 6
<p>(<b>a</b>) The measured capacitance of the four fabricated units with different PDMS structures within the applied force of 10 N and (<b>b</b>) measured capacitance change of the four fabricated units with different PDMS structures within the applied force of 10 N.</p> "> Figure 7
<p>Strain distribution of the four different dielectric layers under a uniform force of 0.5 N: (<b>a</b>) type I; (<b>b</b>) type II; (<b>c</b>) type III; and (<b>d</b>) type IV; (<b>e</b>) deformation of the four different dielectric layers within the applied force of 1 N.</p> "> Figure 8
<p>Schematic diagram of the tactile feedback system for robot obstacle avoidance. Photographs of three printed circuit boards correspond to the three modules above them respectively.</p> "> Figure 9
<p>Output voltage from the capacitance detection module while applying force on the tactile sensing array via finger tapping.</p> "> Figure 10
<p>Experimental results of the tactile feedback system in the application of robot manipulator obstacle avoidance: (<b>a</b>,<b>b</b>) the movement of the forearm without interruption; (<b>c</b>) program flowchart of the MCU; (<b>d</b>–<b>f</b>) the movement of the forearm with force applied on the sensing array.</p> ">
Abstract
:1. Introduction
2. Design and Fabrication
2.1. Design of the Tactile Sensing Array
2.2. Fabrication Process of the Tactile Sensing Array
3. Static Characterization and Discussion
4. Tactile Feedback Experiment for Robot Obstacle Avoidance
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hall, E.L. Intelligent robot trends and predictions for the net future. Proc. SPIE Int. Soc. Opt. Eng. 2001, 4572, 70–80. [Google Scholar] [CrossRef]
- Lee, M.H.; Nicholls, H.R. Tactile sensing for mechatronics—A state of the art survey. Mechatronics 1999, 9, 1–31. [Google Scholar] [CrossRef]
- Petropoulos, A.; Kaltsas, G.; Goustouridis, D.; Gogolides, E. A flexible capacitive device for pressure and tactile sensing. Sci. Direct Procedia Chem. 2009, 1, 867–870. [Google Scholar] [CrossRef]
- Muhammad, H.B.; Oddo, C.M.; Beccai, L.; Recchiuto, C.; Anthony, C.J.; Adams, M.J.; Carrozza, M.C.; Hukins, D.W.L.; Ward, M.C.L. Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger. Sens. Actuators A Phys. 2011, 165, 221–229. [Google Scholar] [CrossRef]
- Maiolino, P.; Galantini, F.; Mastrogiovanni, F.; Gallone, G.; Cannata, G.; Carpi, F. Soft dielectrics for capacitive sensing in robot skins: Performance of different elastomer types. Sens. Actuators A Phys. 2015, 226, 37–47. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, S.; Yun, K.S. Capacitive tactile sensor array for touch screen application. Sens. Actuators A Phys. 2011, 165, 2–7. [Google Scholar] [CrossRef]
- Yao, Y.; Glisic, B. Detection of steel fatigue cracks with strain sensing sheets based on large area electronics. Sensors 2015, 15, 8088–8108. [Google Scholar] [CrossRef] [PubMed]
- Lipomi, D.J.; Michael, V.; Benjamin, T.C.K.; Hellstrom, S.L.; Lee, J.A.; Fox, C.H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Chortos, A.; Yu, G.; Wang, Y.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2013, 5, 3002. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Cui, Y.L.; Tian, G.L.; Shu, Y.; Wang, X.F.; Tian, H.; Yang, Y.; Wei, F.; Ren, T.L. Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture. Sci. Rep. 2015, 5, 15554. [Google Scholar] [CrossRef]
- Kwi-Il, P.; Hwan, S.J.H.; Tae, G.; Jeong, C.K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S.H.; Byun, M.; Wang, Z.L.; et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 2014, 26, 2514–2520. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamashita, T.; Makimoto, N.; Takamatsu, S.; Itoh, T. Ultra-thin piezoelectric strain sensor 5 × 5 array integrated on flexible printed circuit for structural health monitoring by 2D dynamic strain sensing. In Proceedings of the IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24–28 January 2016; pp. 1031–1033.
- Dagdeviren, C.; Su, Y.; Joe, P.; Yona, R.; Liu, Y.; Kim, Y.S.; Huang, Y.; Damadoran, A.R.; Xia, J.; Martin, L.W.; et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 5496. [Google Scholar] [CrossRef] [PubMed]
- Rotzetter, A.C.C.; Schumacher, C.M.; Bubenhofer, S.B.; Grass, R.N.; Gerber, L.C.; Zeltner, M.; Stark, W.J. Thermoresponsive polymer induced sweating surfaces as an efficient way to passively cool buildings. Adv. Mater. 2012, 24, 5352–5356. [Google Scholar] [CrossRef] [PubMed]
- Dhakar, L.; Pitchappa, P.; Tay, F.E.H.; Lee, C. An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator. Nano Energy 2015, 19, 532–540. [Google Scholar] [CrossRef]
- Dhakar, L.; Gudla, S.; Shan, X.; Wang, Z.; Tay, F.E.H.; Heng, C.-H.; Lee, C. Large scale triboelectric nanogenerator and self-powered pressure sensor array using low cost roll-to-roll UV embossing. Sci. Rep. 2016, 6, 22253. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Jug, L.; Meng, E. High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors. Appl. Phys. Lett. 2013, 102, 183511–183515. [Google Scholar] [CrossRef]
- Pang, C.; Lee, G.Y.; Kim, T.I.; Kim, S.M.; Kim, H.N.; Ahn, S.H.; Suh, K.Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers. Nat. Mater. 2012, 11, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Yuan, L.; Zhong, J.; Ding, T.; Liu, Y.; Cai, Z.; Rong, Y.; Han, H.; Zhou, J.; Wang, Z.L. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 2011, 23, 5440–5444. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hwang, D.; Yu, Z.; Takei, K.; Park, J.; Chen, T.; Ma, B.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Cotton, D.P.J.; Graz, I.M.; Lacour, S.P. A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sens. J. 2009, 9, 2008–2009. [Google Scholar] [CrossRef]
- Lee, H.K.; Chang, S.I.; Yoon, E. A flexible polymer tactile Sensor: Fabrication and modular expandability for large area deployment. J. Microelectromech. Syst. 2006, 15, 1681–1686. [Google Scholar] [CrossRef]
- Liang, G.; Wang, Y.; Mei, D.; Xi, K.; Chen, Z. Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for three-axis force measurement. J. Microelectromech. Syst. 2015, 24, 1510–1519. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, G.; Mei, D.; Zhu, L.; Chen, Z. A flexible capacitive tactile sensor array with high scanning speed for distributed contact force measurements. In Proceedings of the IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24–28 January 2016.
- Maiolino, P.; Maggiali, M.; Cannata, G.; Metta, G.; Natale, L. A flexible and robust large scale capacitive tactile system for robots. IEEE Sens. J. 2014, 10, 3910–3917. [Google Scholar] [CrossRef]
- Cannata, G.; Maggiali, M.; Metta, G.; Sandini, G. An embedded artificial skin for humanoid robots. In Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Seoul, Korea, 20–22 August 2008; pp. 434–438.
- Maiolino, P.; Ascia, A.; Maggiali, M.; Natale, L.; Cannata, G.; Metta, G. Large scale capacitive skin for robots. In Smart Actuation and Sensing Systems—Recent Advances and Future Challenges; Berselli, G., Ed.; InTech: Hong Kong, China, 2012. [Google Scholar]
- Crowder, R.M. Automation and Robotics. Available online: http://www.soton.ac.uk/~rmc1/robotics/artactile.htm (accessed on 15 October 2016).
- Dario, P.; Rossi, D. Tactile sensors and gripping challenge. IEEE Spectr. 1985, 22, 46–52. [Google Scholar] [CrossRef]
- Howe, R.D. Tactile sensing and control of robotics manipulation. J. Adv. Robot. 1994, 8, 245–261. [Google Scholar] [CrossRef]
- Dahiya, R.S.; Metta, G. Tactile sensing: From humans to humanoids. IEEE Trans. Robot. 2010, 26, 1–20. [Google Scholar] [CrossRef]
- Dahiya, R.S.; Valle, M. Tactile sensor arrays for humanoid robot. In Proceedings of the 3rd International Conference on PhD Research in Microelectronics and Electronics, Bordeaux, France, 2–5 July 2007.
- Tee, C.K.; Chortos, A.; Dunn, R.R.; Schwartz, G.; Eason, E.; Bao, Z. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 2014, 24, 5427–5434. [Google Scholar] [CrossRef]
- Metzger, C.; Fleisch, E.; Meyer, J. Flexible-foam-based capacitive sensor arrays for object detection at low cost. Appl. Phys. Lett. 2008, 92, 013506. [Google Scholar] [CrossRef]
- Shimojo, M.; Namiki, A.; Ishikawa, M. A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sens. J. 2004, 4, 589–596. [Google Scholar] [CrossRef]
Tactile Sensor | Dielectric Layer | Pressure Range | Sensitivity |
---|---|---|---|
Metzger [34] | Foam | 0–0.1 N | 2%/N |
Shimojo [35] | Pressure conductive rubber | 0–100 N | 1.5%/N |
Cotton [21] | PDMS | 0–0.32 N | 20%/N |
Liang [23] | PDMS | 0–0.5 N | 67.2%/N |
Petropoulos [3] | Air | 0–0.6 N | 57.4%/N |
Lee [22] | Air | 0–40 mN | 3%/mN |
Our work | PDMS | 0–1 N | 35.9%/N |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Z.; Zhu, H.; Liu, H.; Liu, N.; Chen, T.; Yang, Z.; Sun, L. The Design and Characterization of a Flexible Tactile Sensing Array for Robot Skin. Sensors 2016, 16, 2001. https://doi.org/10.3390/s16122001
Ji Z, Zhu H, Liu H, Liu N, Chen T, Yang Z, Sun L. The Design and Characterization of a Flexible Tactile Sensing Array for Robot Skin. Sensors. 2016; 16(12):2001. https://doi.org/10.3390/s16122001
Chicago/Turabian StyleJi, Zhangping, Hui Zhu, Huicong Liu, Nan Liu, Tao Chen, Zhan Yang, and Lining Sun. 2016. "The Design and Characterization of a Flexible Tactile Sensing Array for Robot Skin" Sensors 16, no. 12: 2001. https://doi.org/10.3390/s16122001