Calibration Techniques for Accurate Measurements by Underwater Camera Systems
<p>Typical portable calibration fixture ((<b>Left</b>), courtesy of NOAA) and test range ((<b>Right</b>), from [<a href="#B25-sensors-15-29831" class="html-bibr">25</a>]).</p> "> Figure 2
<p>The ideal geometry for a self-calibration network.</p> "> Figure 3
<p>A full set of calibration images from an underwater stereo-video system, processed using Vision Measurement System (<a href="http://www.geomsoft.com/VMS" target="_blank">www.geomsoft.com/VMS</a>). Both the cameras and the object have been rotated to acquire the convergent geometry of the network.</p> "> Figure 4
<p>The geometry of perspective projection based on physical calibration parameters.</p> "> Figure 5
<p>Schematic view of a stereo-image measurement of a length from 3D coordinates.</p> "> Figure 6
<p>Comparison of radial lens distortion from in-air and in-water calibrations of a GoPro Hero4 camera operated in HD video mode.</p> "> Figure 7
<p>Comparison of decentring lens distortion from in-air and in-water calibrations of a GoPro Hero4 camera operated in HD video mode. Note the much smaller range of distortion values (vertical axis) compared to <a href="#sensors-15-29831-f006" class="html-fig">Figure 6</a>.</p> "> Figure 8
<p>Stability of the right camera calibration parameters (<b>Left</b>) and the relative orientation parameters (<b>Right</b>) for a GoPro Hero 2 stereo-video system. The vertical axis is the change significance of individual parameters between consecutive calibrations [<a href="#B73-sensors-15-29831" class="html-bibr">73</a>].</p> "> Figure 9
<p>Example of a fish silhouette validation in a swimming pool (courtesy of Prof. E. S. Harvey).</p> ">
Abstract
:1. Introduction
2. Calibration Approaches
3. Calibration Algorithms
Camera | GoPro Hero4 #1 | GoPro Hero4 #2 | ||||
---|---|---|---|---|---|---|
Parameter | In Air | In Water | Ratio | In Air | In Water | Ratio |
PPx (mm) | 0.080 | 0.071 | 0.88 | −0.032 | −0.059 | 1.82 |
PPy (mm) | −0.066 | −0.085 | 1.27 | −0.143 | −0.171 | 1.20 |
PD (mm) | 3.676 | 4.922 | 1.34 | 3.658 | 4.898 | 1.34 |
Affinity | −6.74E−03 | −6.71E−03 | 1.00 | −6.74E−03 | −6.84E−03 | 1.01 |
4. Calibration Reliability and Stability
- (1)
- The camera and target arrays are three dimensional in nature. Two dimensional arrays are a source of weak network geometry. Three dimensional arrays minimise correlations between the internal camera calibration parameters and the external camera location and orientation parameters.
- (2)
- The many, convergent camera views approach a 90° intersection at the centre of the target array. A narrowly grouped array of camera views will produce shallow intersections, weakening the network and thereby decreasing the confidence with which the calibration parameters are determined.
- (3)
- The calibration fixture or range fills the field of view of the camera(s) to ensure that image measurements are captured across the entire format. If the fixture or range is small and centred in the field of view then the radial and decentring lens distortion profiles will be defined very poorly because measurements are captured only where the signal is small in magnitude.
- (4)
- The camera(s) are rolled around the optical axis for different exposures so that 0°, 90°, 180° and 270° orthogonal rotations are spread throughout the calibration network. A variety of camera rolls in the network also minimises correlations between the internal camera calibration parameters and the external camera location and orientation parameters.
5. Calibration and Validation Results
Technique | RMS Image Error (pixels) | RMS XYZ Error (mm) | Proportional Error |
---|---|---|---|
Absorption [47,73] | 0.1–0.3 | 0.1–0.5 | 1:3000–1:15,000 |
Absorption [35] | 0.3 | 40–200 | 1:500 |
Geometric correction [61] | 1.0 | 10 | 1:210 |
Perspective shift [64] | 0.3 | 2.0 | 1:1000 |
Absorption [40] | 0.2–0.25 | 1.9 | 1:32,000 |
Technique | Validation | Percentage Error |
---|---|---|
Absorption [47] | Length measurement of silhouettes or rods throughout the volume | 0.2%–0.7% |
Lens distortion grid [17] | Caliper measurements of Chinook Salmon | 1.5% |
Absorption [6] | Caliper measurements of Southern Bluefin Tuna | 0.2% |
Perspective shift [64] | Flat reference plate and straight line re-construction | 0.4% |
Absorption [40] | Similarity transformation between above and below water networks | 0.3% |
Radial lens distortion correction [72] | Distances on checkerboard | 0.9%–1.5% |
Absorption [41] | Length measurements of a rod throughout the volume | 0.5% |
Perspective shift [65] | Flat reference plate and distance between spheres | 0.4%–0.7% |
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- World Wildlife Fund, 2015. Living Blue Planet Report. Available online: http://awsassets.wwf.org.au/downloads/mo038_living_blue_planet_report_16sep15.pdf (accessed on 29 October 2015).
- Pauly, D.; Christensen, V.; Guenette, S.; Pitcher, T.J.; Sumaila, U.R.; Walters, C.J.; Watson, R.; Zeller, D. Towards sustainability in world fisheries. Nature 2002, 418, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.L.; Anderson, M.J.; Kendrick, G.A.; Nardi, K.; Harvey, E.S. Effects of protection from fishing on the lengths of targeted and non targeted fish species at the Houtman Abrolhos Islands, Western Australia. Mar. Ecol. Prog. Ser. 2009, 384, 241–249. [Google Scholar] [CrossRef]
- Duarte, C.M.; Holmer, M.; Olsen, Y.; Soto, D.; Marbà, N.; Guiu, J.; Black, K.; Karakassis, I. Will the Oceans Help Feed Humanity? BioScience 2009, 59, 967–976. [Google Scholar] [CrossRef]
- Naylor, R.L.; Goldberg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.; Clay, J.; Folk, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Harvey, E.S.; Cappo, M.; Shortis, M.R.; Robson, S.; Buchanan, J.; Speare, P. The accuracy and precision of underwater measurements of length and maximum body depth of Southern Bluefin Tuna (Thunnus maccoyii) with a stereo-video camera system. Fish. Res. 2003, 63, 315–326. [Google Scholar] [CrossRef]
- Pienaar, L.V.; Thomson, J.A. Allometric weight-length regression model. J. Fish. Res. Board Can. 1969, 26, 123–131. [Google Scholar] [CrossRef]
- Santos, M.N.; Gaspar, M.B.; Vasconcelos, P.; Monteiro, C.C. Weight–length relationships for 50 selected fish species of the Algarve coast (southern Portugal). Fish. Res. 2002, 59, 289–295. [Google Scholar] [CrossRef]
- Shortis, M.R.; Harvey, E.S.; Abdo, D.A. A review of underwater stereo-image measurement for marine biology and ecology applications. In Oceanography and Marine Biology: An Annual Review; Gibson, R.N., Atkinson, R.J.A., Gordon, J.D.M., Eds.; CRC Press: Boca Raton, FL, USA, 2009; Volume 47. [Google Scholar]
- Murphy, H.M.; Jenkins, G.P. Observational methods used in marine spatial monitoring of fishes and associated habitats: A review. Mar. Freshw. Res. 2010, 61, 236–252. [Google Scholar] [CrossRef]
- Harvey, E.S.; Fletcher, D.; Shortis, M.R.; Kendrick, G. A comparison of underwater visual distance estimates made by SCUBA divers and a stereo-video system: Implications for underwater visual census of reef fish abundance. Mar. Freshw. Res. 2004, 55, 573–580. [Google Scholar] [CrossRef]
- Harvey, E.S.; Fletcher, D.; Shortis, M.R. Improving the statistical power of visual length estimates of reef fish: Comparison of divers and stereo-video. Fish. Bull. 2001, 99, 63–71. [Google Scholar]
- Santana-Garcon, J.; Newman, S.J.; Harvey, E.S. Development and validation of a mid-water baited stereo-video technique for investigating pelagic fish assemblages. J. Exp. Mar. Biol. Ecol. 2014, 452, 82–90. [Google Scholar] [CrossRef]
- Mallet, D.; Pelletier, D. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952–2012). Fish. Res. 2014, 154, 44–62. [Google Scholar] [CrossRef]
- McLaren, B.W.; Langlois, T.J.; Harvey, E.S.; Shortland-Jones, H.; Stevens, R. A small no-take marine sanctuary provides consistent protection for small-bodied by-catch species, but not for large-bodied, high-risk species. J. Exp. Mar. Biol. Ecol. 2015, 471, 153–163. [Google Scholar] [CrossRef]
- Seiler, J.; Williams, A.; Barrett, N. Assessing size, abundance and habitat preferences of the Ocean Perch Helicolenus percoides using a AUV-borne stereo camera system. Fish. Res. 2012, 129, 64–72. [Google Scholar] [CrossRef]
- Petrell, R.J.; Shi, X.; Ward, R.K.; Naiberg, A.; Savage, C.R. Determining fish size and swimming speed in cages and tanks using simple video techniques. Aquac. Eng. 1997, 16, 63–84. [Google Scholar] [CrossRef]
- Phillips, K.; Rodriguez, V.B.; Harvey, E.; Ellis, D.; Seager, J.; Begg, G.; Hender, J. Assessing the Operational Feasibility of Stereo-Video and Evaluating Monitoring Options for the Southern Bluefin Tuna Fishery Ranch Sector; Fisheries Research and Development Corporation Report: Canberra, Australia, 2009. [Google Scholar]
- Rosen, S.; Jörgensen, T.; Hammersland-White, D.; Holst, J.C. DeepVision: A stereo camera system provides highly accurate counts and lengths of fish passing inside a trawl. Can. J. Fish. Aquat. Sci. 2013, 70, 1456–1467. [Google Scholar] [CrossRef]
- Shieh, A.C.R.; Petrell, R.J. Measurement of fish size in Atlantic salmon (salmo salar l.) cages using stereographic video techniques. Aquac. Eng. 1998, 17, 29–43. [Google Scholar] [CrossRef]
- Hale, W.B.; Cook, C.E. Underwater microcontouring. Photogramm. Eng. 1962, 28, 96–98. [Google Scholar]
- Pollio, J. Underwater mapping with photography and sonar. Photogramm. Eng. 1971, 37, 955–968. [Google Scholar]
- Hohle, J. Reconstruction of an underwater object. Photogramm. Eng. 1971, 37, 948–954. [Google Scholar]
- Pollio, J. Remote underwater systems on towed vehicles. Photogramm. Eng. 1972, 38, 1002–1008. [Google Scholar]
- Leatherdale, J.D.; Turner, D.J. Underwater photogrammetry in the North Sea. Photogramm. Rec. 1983, 11, 151–167. [Google Scholar] [CrossRef]
- Baldwin, R.A. An underwater photogrammetric measurement system for structural inspection. Int. Arch. Photogramm. 1984, 25, 9–18. [Google Scholar]
- O’Byrne, M.; Pakrashi, V.; Schoefs, F.; Ghosh, B. A comparison of image based 3D recovery methods for underwater inspections. In Proceedings of the 7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014; pp. 671–678.
- Negahdaripour, S.; Firoozfam, P. An ROV stereovision system for ship-hull inspection. IEEE J. Ocean. Eng. 2006, 31, 551–564. [Google Scholar] [CrossRef]
- Bass, G.F.; Rosencrantz, D.M. The ASHREAH—A pioneer in search of the past. In Submersibles and Their Use in Oceanography and Ocean Engineering; Geyer, R.A., Ed.; Elsevier: Amsterdam, The Netherlands, 1977; pp. 335–350. [Google Scholar]
- Drap, P.; Seinturier, J.; Scaradozzi, D.; Gambogi, P.; Long, L.; Gauch, F. Photogrammetry for virtual exploration of underwater archeological sites. In Proceedings of the 21st International Symposium, CIPA 2007: AntiCIPAting the Future of the Cultural Past, Athens, Greece, 1–6 October 2007.
- Moore, E.J. Underwater photogrammetry. Photogramm. Rec. 1976, 8, 748–763. [Google Scholar] [CrossRef]
- Bianco, G.; Gallo, A.; Bruno, F.; Muzzupappa, M. A comparison between active and passive techniques for underwater 3D applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 34, 357–363. [Google Scholar] [CrossRef]
- Newton, I. Underwater Photogrammetry. In Non-Topographic Photogrammetry; Karara, H.M., Ed.; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 1989; pp. 147–176. [Google Scholar]
- Doucette, J.S.; Harvey, E.S.; Shortis, M.R. Stereo-video observation of nearshore bedforms on a low energy beach. Mar. Geol. 2002, 189, 289–305. [Google Scholar] [CrossRef]
- Schewe, H.; Moncreiff, E.; Gruendig, L. Improvement of fish farm pen design using computational structural modelling and large-scale underwater photogrammetry. Int. Arch. Photogramm. Remote Sens. 1996, 31, 524–529. [Google Scholar]
- Capra, A. Non-conventional system in underwater photogrammetry. Int. Arch. Photogramm. Remote Sens. 1992, 29, 234–240. [Google Scholar]
- Green, J.; Matthews, S.; Turanli, T. Underwater archaeological surveying using Photomodeler, VirtualMapper: Different applications for different problems. Int. J. Naut. Archaeol. 2002, 31, 283–292. [Google Scholar] [CrossRef]
- Abdo, D.A.; Seager, J.W.; Harvey, E.S.; McDonald, J.I.; Kendrick, G.A.; Shortis, M.R. Efficiently measuring complex sessile epibenthic organisms using a novel photogrammetric technique. J. Exp. Mar. Biol. Ecol. 2006, 339, 120–133. [Google Scholar] [CrossRef]
- Shortis, M.R.; Seager, J.W.; Williams, A.; Barker, B.A.; Sherlock, M. Using stereo-video for deep water benthic habitat surveys. Mar. Technol. Soc. J. 2009, 42, 28–37. [Google Scholar] [CrossRef]
- Menna, F.; Nocerino, E.; Troisi, S.; Remondino, F. A photogrammetric approach to survey floating and semi-submerged objects. In Proceedings of the SPIE 8791, Videometrics, Range Imaging, and Applications XII, and Automated Visual Inspection (87910H), Munich, Germany, 14–16 May 2013.
- Boutros, N.; Harvey, E.S.; Shortis, M.R. Calibration and configuration of underwater stereo-video systems for applications in marine ecology. Limnol. Oceanogr. Methods 2015, 13, 224–236. [Google Scholar] [CrossRef]
- Ivanoff, A.; Cherney, P. Correcting lenses for underwater use. J. Soc. Motion Pict. Telev. Eng. 1960, 69, 264–266. [Google Scholar] [CrossRef]
- Chong, A.K.; Stratford, P. Underwater digital stereo-observation technique for red hydrocoral study. Photogramm. Eng. Remote Sens. 2002, 68, 745–751. [Google Scholar]
- Brown, D.C. Close range camera calibration. Photogramm. Eng. 1971, 37, 855–866. [Google Scholar]
- Kenefick, J.F.; Gyer, M.S.; Harp, B.F. Analytical self calibration. Photogramm. Eng. Remote Sens. 1972, 38, 1117–1126. [Google Scholar]
- Fryer, J.G.; Fraser, C.S. On the calibration of underwater cameras. Photogramm. Rec. 1986, 12, 73–85. [Google Scholar] [CrossRef]
- Harvey, E.S.; Shortis, M.R. A system for stereo-video measurement of sub-tidal organisms. Mar. Technol. Soc. J. 1996, 29, 10–22. [Google Scholar]
- Granshaw, S.I. Bundle adjustment methods in engineering photogrammetry. Photogramm. Rec. 1980, 10, 181–207. [Google Scholar] [CrossRef]
- Shortis, M.R.; Seager, J.W. A practical target recognition system for close range photogrammetry. Photogramm. Rec. 2014, 29, 337–355. [Google Scholar] [CrossRef]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. PAMI 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- El-Hakim, S.F.; Faig, W. A combined adjustment of geodetic and photogrammetric observations. Photogramm. Eng. Remote Sens. 1981, 47, 93–99. [Google Scholar]
- Ziemann, H.; El-Hakim, S.F. On the definition of lens distortion reference data with odd-powered polynomials. Can. Surv. 1983, 37, 135–143. [Google Scholar]
- Brown, D.C. Decentring distortion of lenses. Photogramm. Eng. 1966, 22, 444–462. [Google Scholar]
- Fraser, C.S.; Shortis, M.R.; Ganci, G. Multi-sensor system self-calibration. In Proceedings of the SPIE 2598, Videometrics IV, Philadelphia, PA, USA, 25–26 October 1995; pp. 2–18.
- Shortis, M.R. Multi-lens, multi-camera calibration of Sony Alpha NEX 5 digital cameras. In Proceedings of the CD-ROM, GSR_2 Geospatial Science Research Symposium, Melbourne, Australia, 10–12 December 2012.
- Li, R.; Tao, C.; Zou, W.; Smith, R.G.; Curran, T.A. An underwater digital photogrammetric system for fishery geomatics. Int. Arch. Photogramm. Remote Sens. 1996, 31, 319–323. [Google Scholar]
- Lavest, J.M.; Rives, G.; Lapresté, J.T. Underwater camera calibration. In Computer vision—ECCV 2000; Vernon, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 654–668. [Google Scholar]
- Rahman, T.; Anderson, J.; Winger, P.; Krouglicof, N. Calibration of an underwater stereoscopic vision system. In OCEANS 2013 MTS/IEEE-San Diego: An Ocean in Common; IEEE Computer Society: San Diego, CA, USA, 2013. [Google Scholar]
- Bruno, F.; Bianco, G.; Muzzupappa, M.; Barone, S.; Razionale, A.V. Experimentation of structured light and stereo vision for underwater 3D reconstruction. ISPRS J. Photogramm. Remote Sens. 2011, 66, 508–518. [Google Scholar] [CrossRef]
- Sedlazeck, A.; Koch, R. Perspective and non-perspective camera models in underwater imaging-Overview and error analysis. In Outdoor and Large-Scale Real-World Scene Analysis; Dellaert, F., Frahm, J.-M., Pollefeys, M., Leal-Taixé, L., Rosenhahn, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 212–242. [Google Scholar]
- Li, R.; Li, H.; Zou, W.; Smith, R.G.; Curran, T.A. Quantitative photogrammetric analysis of digital underwater video imagery. IEEE J. Ocean. Eng. 1997, 22, 364–375. [Google Scholar]
- Jordt-Sedlazeck, A.; Koch, R. Refractive calibration of underwater cameras. In Computer Vision-CCV 2012; 12th European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2012; pp. 846–859. [Google Scholar]
- Kotowski, R. Phototriangulation in multi-media photogrammetry. Int. Arch. Photogramm. Remote Sens. 1988, 27, 324–334. [Google Scholar]
- Telem, G.; Filin, S. Photogrammetric modeling of underwater environments. ISPRS J. Photogramm. Remote Sens. 2010, 65, 433–444. [Google Scholar] [CrossRef]
- Bräuer-Burchardt, C.; Kühmstedt, P.; Notni, G. Combination of air- and water-calibration for a fringe projection based underwater 3D-scanner. In Computer Analysis of Images and Patterns; Azzopardi, G., Petkov, N., Eds.; Springer International: Charn, Switzerland, 2015; pp. 49–60. [Google Scholar]
- Abdel-Aziz, Y.I.; Karara, H.M. Direct linear transformation into object space coordinates in close-range photogrammetry. In Proceedings of the ASPRS Symposium on Close-Range Photogrammetry, Urbana, IL, USA, 28–29 January 1971; pp. 1–18.
- Kwon, Y.H.; Casebolt, J.B. Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis. Sports Biomech. 2006, 5, 95–120. [Google Scholar] [CrossRef] [PubMed]
- Heikkila, J.; Silvén, O. A four-step camera calibration procedure with implicit image correction. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 17–19 June 1997; pp. 1106–1112.
- Tsai, R.Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 1987, 3, 323–344. [Google Scholar] [CrossRef]
- King, B.R. Bundle adjustment of constrained stereo pairs-Mathematical models. Geomat. Res. Australas. 1995, 63, 67–92. [Google Scholar]
- Bouguet, J. Camera Calibration Toolbox for MATLAB. California Institute of Technology. Available online: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html (accessed on 28 October 2015).
- Wehkamp, M.; Fischer, P. A practical guide to the use of consumer-level still cameras for precise stereogrammetric in situ assessments in aquatic environments. Underw. Technol. 2014, 32, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Harvey, E.S.; Shortis, M.R. Calibration stability of an underwater stereo-video system: Implications for measurement accuracy and precision. Mar. Technol. Soc. J. 1998, 32, 3–17. [Google Scholar]
- Shortis, M.R.; Miller, S.; Harvey, E.S.; Robson, S. An analysis of the calibration stability and measurement accuracy of an underwater stereo-video system used for shellfish surveys. Geomat. Res. Australas. 2000, 73, 1–24. [Google Scholar]
- Shortis, M.R.; Beyer, H.A. Calibration stability of the Kodak DCS420 and 460 cameras. In Proceedings of the SPIE 3174, Videometrics. V, San Fiego, CA, USA, 30–31 July 1997.
- Liang, C.-K.; Peng, Y.-C.; Chen, H.; Li, S.; Pereira, F.; Shum, H.-Y.; Tescher, A.G. Rolling shutter distortion correction. In Proceedings of the SPIE 5960, Visual Communications and Image Processing 2005, Beijing, China, 12–15 July 2005.
- Shortis, M.R.; Clarke, T.A.; Robson, S. Practical testing of the precision and accuracy of target image centring algorithms. In Proceedings of the SPIE 2598, Videometrics IV, Philadelphia, PA, USA, 25–26 October 1995; pp. 65–76.
- Harvey, E.S.; Shortis, M.R.; Stadler, M.; Cappo, M. A comparison of the accuracy of measurements from single and stereo-video systems. Mar. Technol. Soc. J. 2002, 36, 38–49. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shortis, M. Calibration Techniques for Accurate Measurements by Underwater Camera Systems. Sensors 2015, 15, 30810-30826. https://doi.org/10.3390/s151229831
Shortis M. Calibration Techniques for Accurate Measurements by Underwater Camera Systems. Sensors. 2015; 15(12):30810-30826. https://doi.org/10.3390/s151229831
Chicago/Turabian StyleShortis, Mark. 2015. "Calibration Techniques for Accurate Measurements by Underwater Camera Systems" Sensors 15, no. 12: 30810-30826. https://doi.org/10.3390/s151229831
APA StyleShortis, M. (2015). Calibration Techniques for Accurate Measurements by Underwater Camera Systems. Sensors, 15(12), 30810-30826. https://doi.org/10.3390/s151229831