Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth
<p>Location of the greenhouse model (<b>left</b>) and its external overview (<b>right</b>).</p> "> Figure 2
<p>Technical drawing of photovoltaic (PV) panels with variable shading.</p> "> Figure 3
<p>Features of the greenhouse: fixed panels (<b>a</b>); mobile panels (<b>b</b>); inverter (<b>c</b>); engine used for the panels movement (<b>d</b>); 3D diagram of the greenhouse model, highlighting the part which will be affected by the PV roof (<b>e</b>); diagram of the greenhouse prototype structure (<b>f</b>).</p> "> Figure 3 Cont.
<p>Features of the greenhouse: fixed panels (<b>a</b>); mobile panels (<b>b</b>); inverter (<b>c</b>); engine used for the panels movement (<b>d</b>); 3D diagram of the greenhouse model, highlighting the part which will be affected by the PV roof (<b>e</b>); diagram of the greenhouse prototype structure (<b>f</b>).</p> "> Figure 4
<p>Data logging computer (<b>a</b>); group of sensors (<b>b</b>); and details of sensors (<b>c</b>).</p> "> Figure 5
<p>Experimental stage: complete panel diagram (overlapping panels) (<b>a</b>); complete mobile PV system (maximum capture of light radiation) (<b>b</b>); seedling on arrival in commercial plug tray (<b>c</b>); plants in the greenhouse prototype (<b>d</b>); plants during the trial (<b>e</b>).</p> "> Figure 6
<p>Illuminance data (average per week) collected between 22 August 2016 and 18 September 2016 in the control zone and in the PV area.</p> "> Figure 7
<p>Solar radiation data (average per week) measured between 22 August 2016 and 18 September 2016 in the control zone and in the PV area.</p> "> Figure 8
<p>PAR data (average per week) measured between 22 August 2016 and 18 September 2016 in the control zone and in the PV area.</p> "> Figure 9
<p>“α variable”, that expresses the percentage ratio of the light data difference between control and PV, compared to control. When α = 0 the light conditions are the same for the two treatments (control and PV), greater value of α indicated the reduced brightness conditions achieved under PV.</p> "> Figure 10
<p>Temperature and ur% data, in the greenhouse, collected in the period related to brightness measurements. The significant drop in temperature seen in the last week (37 W) is due to a particularly cloudy period.</p> "> Figure 11
<p>Iberis: analysis of plant growth parameters at the end of the trial.</p> "> Figure 12
<p>Iberis: control and plants under PV compared.</p> "> Figure 13
<p>Petunia: analysis of plant growth parameters at the end of the trial.</p> "> Figure 14
<p>Petunia: control and plants under PV compared.</p> "> Figure 15
<p>Mini-cyclamen: analysis of plant growth parameters at the end of the trial.</p> "> Figure 16
<p>Mini-cyclamen: control and plants under PV compared.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. The Prototype
- during sunny days, when the PV production is greater, it is possible to use the maximum shading of 66% (which exhibits greater active area compared to the fixed one);
- on cloudy days, there is a certain loss of electrical energy (compared to a standard system with shading 50%). However, on the other hand, there is an advantage from the viewpoint of the greenhouse performance, with a greater light passage (33% of shading). The movement system allows the variation from 33% to 66%, by translating the PV mobile module (only about 25 cm) placed below the fixed one.
2.3. Environmental Measures
- LP PHOT 03 (measuring range of 0–100,000 lux with a resolution of both 40 lux from 0 to 10,000 lux and 400 lux from 10,000 to 100,000 lux): it measures illuminance (lux), defined as the ratio between the luminous flux (lumens), passing through a surface, and the surface area of the area considered (m2);
- LP RAD 03 (measuring range of 0–1 W/m2 with a resolution of 1 W/m2 from 0 to 250 W/m2 and of 4 W/m2 from 25 to 1 W/m2): it measures the irradiance (W/m2) defined as the ratio between the energetic flux (W), passing through a surface, and the surface area of the area considered (m2) in the spectral region VIS-NIR (40 nm–1.050 nm);
- LP PAR (measuring range of 0–1.5-Mol/m2/sec) and PPF (Photosynthetic Photons Flux, with a resolution of 1 PPF from 0 to 250 PPF and 6 PPF from 250 to 1500 PPF): it measures the number of photons in the spectral region ranging from 400 nm 720 nm, arriving in a second on a surface;
- LP UVA 03 (measuring ranges from 0 to 200 W/m2 with a resolution of 1 W/m2): it measures global irradiance in the UVB spectral region on a flat surface (W/m2). Particularly, the spectral sensitivity of the instrument is centered at 305 nm with a bandwidth (FWHM) of 5 nm.
2.4. Plant Materials and Agronomical Trial
- plant height;
- plant diameter;
- number of flowers/plant. In the case of iberis, the number of flower buds was counted since no blooming was scored for both treatments (PV and control).
3. Results
3.1. Data Distribution Inside the Greenhouse
- the amount of incident light per unit area is about two times higher under the control area compared to the PV treated area;
- the total radiation (RAD) and the PAR were reduced of about 30% and 20% respectively under PV treatment.
3.2. Crops Production and Relation with Greenhouse Plant
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bulgari, R.; Cola, G.; Ferrante, A.; Franzoni, G.; Mariani, L.; Martinetti, L. Micrometeorological environment in traditional and photovoltaic greenhouses and effects on growth and quality of tomato (Solanum lycopersicum L.). Ital. J. Agrometeorol. 2015, 20, 27–38. [Google Scholar]
- Zambon, I.; Colantoni, A.; Cecchini, M.; Mosconi, E.M. Rethinking Sustainability within the Viticulture Realities Integrating Economy, Landscape and Energy. Sustainability 2018, 10, 320. [Google Scholar] [CrossRef]
- Demirbaş, A. Global renewable energy resources. Energy Sources 2006, 28, 779–792. [Google Scholar] [CrossRef]
- Kralova, I.; Sjöblom, J. Biofuels-renewable energy sources: A review. J. Dispers. Sci. Technol. 2010, 31, 409–425. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Carlini, M.; Honorati, T.; Castellucci, S. PV greenhouses: Comparison of optical and thermal behaviour for energy savings. Math. Probl. Eng. 2012. [Google Scholar] [CrossRef]
- Cossu, M.; Murgia, L.; Ledda, L.; Deligios, P.A.; Sirigu, A.; Chessa, F.; Pazzona, A. Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity. Appl. Energy 2014, 133, 89–100. [Google Scholar] [CrossRef]
- Marucci, A.; Colantoni, A.; Zambon, I.; Egidi, G. Precision farming in hilly areas: The use of network RTK in GNSS technology. Agriculture 2017, 7, 60. [Google Scholar] [CrossRef]
- Celik, A.N.; Muneer, T.; Clarke, P. A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15. Renew. Energy 2009, 34, 849–856. [Google Scholar] [CrossRef]
- Marucci, A.; Zambon, I.; Colantoni, A.; Monarca, D. A combination of agricultural and energy purposes: Evaluation of a prototype of photovoltaic greenhouse tunnel. Renew. Sustain. Energy Rev. 2018, 82, 1178–1186. [Google Scholar] [CrossRef]
- Stanhill, G. Solar energy in agriculture. Agric. Ecosyst. Environ. 1992, 38, 352–353. [Google Scholar] [CrossRef]
- Parker, B.F. Solar Energy in Agriculture; Elsevier: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Yano, A.; Tsuchiya, K.; Nishi, K.; Moriyama, T.; Ide, O.; Toya, M. Development of a photovoltaic module as a power source for greenhouse environment control devices and a study on its mounting in a greenhouse. J. Jpn. Soc. Agric. Mach. 2005, 67, 124–127. [Google Scholar]
- Ganguly, A.; Ghosh, S. Modeling and analysis of a fan-pad ventilated floricultural greenhouse. Energy Build. 2007, 39, 1092–1097. [Google Scholar] [CrossRef]
- Russo, G.; Anifantis, A.S.; Verdiani, G.; Mugnozza, G.S. Environmental analysis of geothermal heat pump and LPG greenhouse heating systems. Biosyst. Eng. 2014, 127, 11–23. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Wang, R.Z.; Liu, W. Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application. Energy 2014, 67, 63–73. [Google Scholar] [CrossRef]
- Yang, N.W.; Zang, L.S.; Wang, S.; Guo, J.Y.; Xu, H.X.; Zhang, F.; Wan, F.H. Biological pest management by predators and parasitoids in the greenhouse vegetables in China. Biol. Control 2014, 68, 92–102. [Google Scholar] [CrossRef]
- Pérez-Alonso, J.; Pérez-García, M.; Pasamontes-Romera, M.; Callejón-Ferre, A.J. Performance analysis and neural modelling of a greenhouse integrated photovoltaic system. Renew. Sustain. Energy Rev. 2012, 16, 4675–4685. [Google Scholar] [CrossRef]
- Djevic, M.; Dimitrijevic, A. Energy consumption for different greenhouse constructions. Energy 2009, 34, 1325–1331. [Google Scholar] [CrossRef]
- Canakci, M.; Akinci, I. Energy use pattern analysis of greenhouse vegetable production. Energy 2006, 31, 1243–1256. [Google Scholar] [CrossRef]
- Singh, H.; Singh, A.K.; Kushwaha, H.L.; Singh, A. Energy consumption pattern of wheat production in India. Energy 2007, 32, 1848–1854. [Google Scholar] [CrossRef]
- Sethi, V.P.; Sharma, S.K. Greenhouse heating and cooling using aquifer water. Energy 2007, 32, 1414–1421. [Google Scholar] [CrossRef]
- Campiglia, E.; Colla, G.; Mancinelli, R.; Rouphael, Y.; Marucci, A. Energy balance of intensive vegetable cropping systems in central Italy. Acta Hortic. 2007, 747, 185–191. [Google Scholar] [CrossRef]
- Marucci, A.; Pagniello, B. Simulation of the growth and the production of the tomato in typical greenhouses of the Mediterranean environment. J. Food Agric. Environ. 2011, 9, 407–411. [Google Scholar]
- Vox, G.; Teitel, M.; Pardossi, A.; Minuto, A.; Tinivella, F.; Schettini, E. Sustainable Greenhouse Systems. In Sustainable Agriculture: Technology, Planning and Management; Salazar, A., Rios, I., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2010; Chapter 1; pp. 1–79. [Google Scholar]
- Hanan, J.J. Greenhouses: Advanced Technology for Protected Cultivation; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Nelson, P. Greenhouse Operation and Management; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Marucci, A.; Campiglia, E.; Colla, G.; Pagniello, B. Environmental impact of fertilization and pesticide application in vegetable cropping systems under greenhouse and open field conditions. J. Food Agric. Environ. 2011, 9, 840–846. [Google Scholar]
- Colantoni, A.; Zambon, I.; Monarca, D.; Cecchini, M.; Marucci, A.; Piancentini, L.; Feltrini, S. Greenhouses plants as a landmark for research and innovation: The combination of agricultural and energy purposes in Italy. Chem. Eng. Trans. 2017, 58, 469–474. [Google Scholar]
- Cuce, E.; Harjunowibowo, D.; Cuce, P.M. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 64, 34–59. [Google Scholar] [CrossRef]
- Huang, J.; Li, G.; Yang, Y. A semi-transparent plastic solar cell fabricated by a lamination process. Adv. Mater. 2008, 20, 415–419. [Google Scholar] [CrossRef]
- Kozai, T.; He, D.; Ohtsuka, H.; Kamiya, I. Simulation of solar radiation transmission into a lean-to greenhouse with photovoltaic cells on the roof. Case study for a greenhouse with infinite longitudinal length. Environ. Control Biol. 1999, 37, 101–108. [Google Scholar] [CrossRef]
- Marucci, A.; Gusman, A.; Pagniello, B.; Cappuccini, A. Limits and prospects of PV covers in Mediterranean greenhouses. J. Agric. Eng. 2013, 44, 1–8. [Google Scholar]
- Stanghellini, C. La serra da utilizzatrice a fornitrice di energia? Accademia dei Georgofili 2010, 27, 1–7. [Google Scholar]
- Tanaka, S.; Zakhidov, A.A.; Ovalle-Robles, R.; Yoshida, Y.; Hiromitsu, I.; Fujita, Y.; Yoshino, K. Semitransparent organic photovoltaic cell with carbon nanotube-sheet anodes and Ga-doped ZnO cathodes. Synth. Met. 2009, 159, 2326–2328. [Google Scholar] [CrossRef]
- McDonald, S.A.; Konstantatos, G.; Zhang, S.; Cyr, P.W.; Klem, E.J.D.; Levina, L.; Sargent, E.H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Minuto, G.; Tinivella, F.; Bruzzone, C.; Minuto, A. Con il fotovoltaico sul tetto la serra raddoppia a sua utilità. L’informatore Agrario Supplemento 2011, 38, 30–33. [Google Scholar]
- Stanghellini, C.; Heuvelink, E. Coltura e clima: Effetto microclimatico dell’ambiente serra. Italus Hortus 2007, 14, 37–49. [Google Scholar]
- Li, D.H.W.; Lam, T.N.T.; Chan, W.W.H.; Mak, A.H.L. Energy and cost analysis of semi-transparent photovoltaic in office buildings. Appl. Energy 2009, 86, 722–729. [Google Scholar]
- Minuto, G.; Tinivella, F.; Dani, E.; Gimelli, F.; Minuto, A. Serre fotovoltaiche a duplice attitudine. Colt. Protette 2010, 39, 70–77. [Google Scholar]
- Kadowaki, M.; Yano, A.; Ishizu, F.; Tanaka, T.; Noda, S. Effects of greenhouse photovoltaic array shading on Welsh onion growth. Biosyst. Eng. 2012, 111, 290–297. [Google Scholar] [CrossRef]
- Rogge, E.; Nevens, F.; Gulinc, H. Reducing the visual impact of ‘greenhouse parks’ in rural landscapes. Landsc. Urban Plan. 2008, 87, 76–83. [Google Scholar] [CrossRef]
- Zambon, I.; Colantoni, A.; Carlucci, M.; Morrow, N.; Sateriano, A.; Salvati, L. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes. Environ. Impact Assess. Rev. 2017, 64, 37–46. [Google Scholar] [CrossRef]
- Weissteiner, C.J.; Strobl, P.; Sommer, S. Assessment of status and trends of olive farming intensity in EU-Mediterranean countries using remote sensing time series and land cover data. Ecol. Indic. 2011, 11, 601–610. [Google Scholar] [CrossRef]
- Zitti, M.; Zambon, I.; Mavrakis, A.; Salvati, L. The Way Toward Dispersed Metropolitan Growth: Land-use Efficiency and the Abandonment of a Mediterranean Compact Tradition. Int. J. Ecol. Dev. 2018, 33, 108–124. [Google Scholar]
- Siciliano, G. Social multicriteria evaluation of farming practices in the presence of soil degradation. A case study in Southern Tuscany, Italy. Environ. Dev. Sustain. 2009, 11, 1107–1133. [Google Scholar] [CrossRef]
- Ganguly, A.; Misra, D.; Ghosh, S. Modeling and analysis of solar photovoltaic-electrolyzer-fuel cell hybrid power system integrated with a floriculture greenhouse. Energy Build. 2010, 42, 2036–2043. [Google Scholar] [CrossRef]
- Delfanti, L.; Colantoni, A.; Recanatesi, F.; Bencardino, M.; Sateriano, A.; Zambon, I.; Salvati, L. Solar plants, environmental degradation and local socioeconomic contexts: A case study in a Mediterranean country. Environ. Impact Assess. Rev. 2016, 61, 88–93. [Google Scholar] [CrossRef]
- Marcheggiani, E.; Gulinck, H.; Galli, A. Detection of fast land. In International Conference on Computational Science and Its Applications; Springer: Berlin, Germany, 2013; pp. 315–327. [Google Scholar]
- Tudisca, S.; Di Trapani, A.M.; Sgroi, F.; Testa, R.; Squatrito, R. Assessment of Italian energy policy through the study of a photovoltaic investment on greenhouse. Afr. J. Agric. Res. 2013, 8, 3089–3096. [Google Scholar]
- Yano, A.; Kadowaki, M.; Furue, A.; Tamaki, N.; Tanaka, T.; Hiraki, E.; Kato, Y.; Ishizu, F.; Noda, S. Shading and electrical features of a photovoltaic array mounted inside the roof of an east-west oriented greenhouse. Biosyst. Eng. 2010, 106, 367–377. [Google Scholar] [CrossRef]
- Asdrubali, F.; Cotana, F.; Messineo, A. On the Evaluation of solar greenhouse efficiency in building simulation during the heating period. Energies 2012, 5, 1864–1880. [Google Scholar] [CrossRef]
- Mekhilef, S.; Faramarzi, S.Z.; Saidur, R.; Salam, Z. The application of solar technologies for sustainable development of agricultural sector. Renew. Sustain. Energy Rev. 2013, 18, 583–594. [Google Scholar] [CrossRef]
- Messineo, A.; Panno, D. Municipal waste management in Sicily: Practices and challenges. Waste Manag. 2008, 28, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Messineo, A.; Volpe, R.; Marvuglia, A. Ligno-cellulosic biomass exploitation for power generation: A case study in Sicily. Energy 2012, 45, 613–625. [Google Scholar] [CrossRef]
- Sgroi, F.; Tudisca, S.; Di Trapani, A.M.; Testa, R.; Squatrito, R. Efficacy and efficiency of Italian energy policy: The case of PV systems in greenhouse farms. Energies 2014, 7, 3985–4001. [Google Scholar] [CrossRef]
- Zambon, I.; Monarca, D.; Cecchini, M.; Bedini, R.; Longo, L.; Romagnoli, M.; Marucci, A. Alternative Energy and the Development of Local Rural Contexts: An Approach to Improve the Degree of Smart Cities in the Central-Southern Italy. Contemp. Eng. Sci. 2016, 9, 1371–1386. [Google Scholar]
- Salisbury, F.B.; Ross, C.W. Plant physiology; Wadsworth: Boston, 1992. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 2nd ed.; Sinauer Associates Publishers: Sunderland, MA, USA, 1998. [Google Scholar]
- Dehbi, A.; Youssef, B.; Chappey, C.; Mourad, A.H.; Picuno, P.; Statuto, D. Multilayers Polyethylene Film for Crop Protection in Harsh Climatic Conditions. Adv. Mater. Sci. Eng. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Garcia-Caparros, P.; Contreras, J.I.; Baeza, R.; Segura, M.L.; Lao, M.T. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería. Sustainability 2017, 9, 2271. [Google Scholar] [CrossRef]
- Barbeau, C.D.; Oelbermann, M.; Karagatzides, J.D.; Tsuji, L.J. Sustainable agriculture and climate change: Producing potatoes (Solanum tuberosum L.) and bush beans (Phaseolus vulgaris L.) for improved food security and resilience in a canadian subarctic first nations community. Sustainability 2015, 7, 5664–5681. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colantoni, A.; Monarca, D.; Marucci, A.; Cecchini, M.; Zambon, I.; Di Battista, F.; Maccario, D.; Saporito, M.G.; Beruto, M. Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth. Sustainability 2018, 10, 855. https://doi.org/10.3390/su10030855
Colantoni A, Monarca D, Marucci A, Cecchini M, Zambon I, Di Battista F, Maccario D, Saporito MG, Beruto M. Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth. Sustainability. 2018; 10(3):855. https://doi.org/10.3390/su10030855
Chicago/Turabian StyleColantoni, Andrea, Danilo Monarca, Alvaro Marucci, Massimo Cecchini, Ilaria Zambon, Federico Di Battista, Diego Maccario, Maria Grazia Saporito, and Margherita Beruto. 2018. "Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth" Sustainability 10, no. 3: 855. https://doi.org/10.3390/su10030855